首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   10篇
  2012年   11篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2003年   2篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有102条查询结果,搜索用时 312 毫秒
31.
In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the ?NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of “X-spacer-X” were used, differing by the reactive functional groups (X = aldehyde: ?CHO, isothiocyanate: ?NCS, isocyanate: ?NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30 °C against no loss for PDC and DIC).These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.  相似文献   
32.
Molecular Biology Reports - Hsa-mir-143 and hsa-let-7c have been reported to be deregulated in multiple neoplasms. The main purpose of this study was to investigate the expression of these miRNAs...  相似文献   
33.
The interaction between silver ion and DNA has been followed by submarine gel electrophoresis. When pBR322 plasmid DNA was allowed to interact with silver(I) acetate, it was found to contain Form I and Form II bands whose intensity remained unchanged as the concentration of Ag(+) was increased from 0 to 50 mM. However, the mobility of the bands decreased as the concentration of Ag(+) was increased, indicating the occurrence of increased covalent binding of the metal ion with DNA. When 1:1 mixtures of silver(I) acetate and ascorbate were allowed to interact with plasmid and genomic DNAs, it was found that the mixtures were much more damaging to plasmid as well as genomic DNAs than silver(I) acetate or ascorbate alone. In the case of pBR322 plasmid DNA, the mixture at 12.5 mM concentration was found to be more damaging than the mixtures at both higher and lower concentrations. The increased DNA damage is believed to be due to free radicals produced from the oxidation of ascorbate by molecular oxygen where the metal ion was playing a catalytic role.  相似文献   
34.
Plant cell organelle proteomics in response to abiotic stress   总被引:2,自引:0,他引:2  
Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.  相似文献   
35.
Flooding and drought are the two different forms of water stress that adversely affect the growth and development of soybean plant in particular at early stage. Ascorbate peroxidase (APX) is a known antioxidant enzyme that plays key role in abiotic stresses. To investigate the changes in APX in soybean under drought and flooding stresses, western blotting, enzyme activity assay and biophoton emission techniques were used. Flooding stress was imposed by adding excess amount of water in the sand and drought by withholding water supply. Under flooding stress, a decrease in APX was detected with time. Completely opposite trend was evident in hypocotyl and root of plants exposed to drought. Western blotting and APX activity results are complementary to each other. Biophoton emissions further confirmed the increasing and decreasing trend of APX under drought and flooding stress, respectively.  相似文献   
36.
Soil flooding constitutes a seasonal factor that negatively affects plant performance and crop yields. In this work, the relationship between oxidative damage and flooding sensitivity was addressed in three citrus genotypes with different abilities to tolerate waterlogging. We examined leaf visible damage, oxidative damage in terms of malondialdehyde (MDA) concentration, leaf proline concentration, leaf and root ascorbate and glutathione contents and the antioxidant enzyme activities superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.8.1.7). No differences in the extent of oxidative damage relative to controls were found among genotypes. However, a different ability to delay the apparition of oxidative damage was associated to a higher tolerance to waterlogging. This ability was linked to an enhanced activated oxygen species' scavenging capacity in terms of an increased antioxidant enzyme activity and higher content in polar antioxidant compounds. Therefore, the existence of a direct relationship between stress sensitivity and the early accumulation of MDA is proposed. In addition, data indicate that the protective role of proline has to be considered minimal as its accumulation was inversely correlated with tolerance to the stress. The positive antioxidant response in Carrizo citrange ( Poncirus trifoliata L. Raf. ×  Citrus sinensis L. Osb.) and Citrumelo CPB 4475 ( Poncirus trifoliata L. Raf. ×  Citrus paradisi L. Macf.) might be responsible for a higher tolerance to flooding stress, whereas in Cleopatra mandarin ( Citrus reshni Hort. Ex Tan.), the early accumulation of MDA seems to be associated to an impaired ability for H2O2 scavenging.  相似文献   
37.
38.
The plant hormone “auxin” is a key regulator of plant development and environmental responses. Many genes in Arabidopsis thaliana are known to be up-regulated in response to auxin. Auxin response factors activate or repress the expression of genes by binding at their promoter regions within auxin response elements (AuxRE) that are key regulatory cis-acting motives. Therefore, the identification of auxin-response elements is among the most important issues to understand the auxin regulation mechanisms. Thus, searching the TGTCTC motif is an unreliable method to identify AuxRE because many AuxRE variants may also be functional. In the present study, we perform an In-silico prediction of AuxREs in promoters of primary auxin responsive genes. We exploit microarray data of auxin response in Arabidopsis thaliana seedlings, in order to provide biological annotation to AuxRE. We apply a data fusion method based on the combined use of evidence theory and fuzzy sets to scan upstream sequences of response genes.  相似文献   
39.
Pyrene was found to act as a cocarcinogen in the induction of transformation of cultured Balb/c3T3 cells by three different types of carcinogens: a direct acting chemical carcinogen, -propiolactone, a chemical carcinogen requiring metabolic activation, benzo[a]pyrene, and a physical carcinogen (60Co) gamma radiation. Since pyrene enhanced transformation in vitro by approximately the same amount for all the carcinogens tested, these results suggest that the carcinogenic action of pyrene is not related to carcinogen metabolism or uptake in vitro. An extract of soybeans containing the Bowman-Birk protease inhibitor was shown to reduce transformation induced by -propiolactone, benzo[a]pyrene and -rays, both with and without the cocarcinogenic effect of pyrene, to background levels; the magnitude of the reduction in transformation by the protease inhibitor preparation was unrelated to the concentration of carcinogen. Neither the mechanism for the cocarcinogenic action of pyrene nor the anticarcinogenic effect of the soybean extract is known, but several hypotheses are discussed.Abbreviations BaP benzo[a]pyrene - BBI Bowman-Birk inhibitor - BPL -propiolactone  相似文献   
40.
Biophotons are ultraweak photon emissions that are closely related to various biological activities and processes. In mammals, biophoton emissions originate from oxidative bursts in immunocytes during immunological responses. Biophotons emitted from plant organs provide novel information about the physiological state of plant under in vivo condition. In this review, the principles and recent advances in the measurement of biophoton emissions in plants are described. Furthermore, examples of biophoton emission and proteomics in soybean under abiotic stress are reviewed and discussed. Finally, this review suggests that the application of proteomics should provide a better interpretation of plant response to biophoton emission and allow the identification of genes that will allow the screening of crops able to produce maximal yields, even in stressful environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号