首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  2022年   3篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   4篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
The application of clinical biochemical techniques to determine the products of intermediary metabolism has proved to be a reliable approach for the study of the physiological state of animals in nature. More specifically, the determination of plasma metabolites, such as glucose, total proteins (PRO), albumin (ALB), globulins (GL), urea, uric acid, triglycerides (TG) and beta-hydroxy-butyrate (BHB), and plasma enzymes such as creatine kinase (CK) and aspartate aminotransferase (AST) in wild animals is a valuable possibility for a non-destructive assessment of health in endangered populations. Since August 2004 to January 2005, we conducted a temporal study in a conservation priority site, the "Carlos Anwandter Nature Sanctuary" to determine blood biochemistry of a wild population of black-necked swans (Cygnus melanocoryphus). This population was experiencing a drastic reduction, according to the actual knowledge about yearly fluctuations in numbers and breeding pairs. In six months, we periodically sampled about 12 swans (a total of 122 individuals), which exhibited a reduction near 30% in body mass (body mass corrected by total length). Our results showed reductions in most plasma biochemical parameters (glucose, PRO, ALB, uric acid, TG) and increase in BHB, which taken together indicated signs of chronic malnutrition. Also, the increase in AST and CK that we found, together with additional evidences of sub-lethal hepatic damage (in dead individuals), and iron pollution in aquatic plants and water confirmed that water pollution was the ultimate cause of this population reduction.  相似文献   
22.
A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster.  相似文献   
23.
During the past 30 years, the evolution of endothermy has been a topic of keen interest to palaeontologists and evolutionary physiologists. While palaeontologists have found abundant Permian and Triassic fossils, suggesting important clues regarding the timing of origin of endothermy, physiologists have proposed several plausible hypotheses of how the metabolic elevation leading to endothermy could have occurred. More recently, molecular biologists have developed powerful tools to infer past adaptive processes, and gene expression mechanisms that describe the organization of genomes into phenotypes. Here, we argue that the evolution of endothermy could now be elucidated based on a joint, and perhaps unprecedented, effort of researchers from the fields of genomics, physiology and evolution.  相似文献   
24.
Respiration and energy metabolism are key processes in animals, which are severely constrained by the design of physical structures, such as respiratory structures. Insects have very particular respiratory systems, based on gas diffusion across tracheae. Since the efficiency of the tracheal respiratory system is highly dependent on body shape, the pattern of morphological variation during ontogeny could have important metabolic consequences. We studied this problem combining through-flow respirometry and geometric morphometrics in 88 nymphs of the sand cricket, Gryllus firmus. After measuring production in each individual, we took digital photographs and defined eight landmarks for geometric morphometric analysis. The analysis suggested that ontogenic deformations were mostly related to enlargement of the abdomen, compared to thorax and head. We found that (controlling for body size) metabolic variables and especially resting metabolism are positively correlated with a shape-component associated to an elongation of the abdomen. Our results are in agreement with the mechanics of tracheal ventilation in orthopterans, as gas circulation occurs by changes in abdominal pressures due to abdominal contractions and expansions along the longitudinal axis.  相似文献   
25.
One of the most ubiquitous consequences of feeding in animals is specific dynamic action (SDA), a drastic increment in metabolic rate after a meal, which lasts from a few hours to several days. According to a recent exhaustive review by Secor (2009), studies in SDA are abundant, encompassing all kinds of vertebrates and invertebrates. However, important exceptions are arachnids, as few studies have characterized SDA in this group. Here, we measured the standard metabolic rate (SMR) of the Chilean tarantulas Euathlus truculentus (body mass=7.32±0.7 g; N=32; T(A)=25°C), its inter-individual variation (i.e., repeatability) and its SDA. We measured SMR three or four times in each individual, and we also conducted predation experiments where a prey was consumed by each spider, during a respirometry trial. The SMR of E. truculentus was 0.00049±0.000079 mlCO(2) g(-1) min(-1) which corresponds to 1524 μW (assuming a protein-based diet), 108.4% of the predicted value for arachnids. According to the standard nomenclature for SDA studies, the scope of the SDA for a meal size of 1.26±0.04 g (18% of the spider size) was 6.55±1.1 times the baseline, the time to peak was 45 min, and the magnitude of the SDA was 0.28±0.03 kj, which is 85% of the expected value for invertebrates. Our SMR data are in concordance with previous findings suggesting remarkably low energy metabolism in arachnids, compared with other arthropods. On the other hand, the exceedingly high scope of the postprandial response contrasts with the comparatively low SDA. This fact suggests that spiders spend most of the energy for digestion in a short period after prey capture, which could be a consequence of their external digestion.  相似文献   
26.
One of the most important factors that determine the evolutionary trajectory of a suite of traits in a population is the structure of the genetic variance-covariance matrix (G). We studied the cyclically parthenogenetic aphid Rhopalosiphum padi, whose populations exhibit two types of reproductive lineages respectively specialized in sexuality (that is, cyclically parthenogenetic lineages) and in asexuality (that is, obligate parthenogenetic lineages). We compared the quantitative genetics of life histories in these two lineage types. Our results suggest that both, the elements and the whole structure of the resulting G matrices differ in the very short term, between lineage types. This would involve the evolution toward different evolutionary optima in the same population, depending on whether sexual or asexual lineages predominate. Since sexual and asexual lineages vary seasonally in their abundance, a fluctuating selective regime has been proposed for this species, which would contribute to the maintenance of the reproductive polymorphism that these populations exhibit.  相似文献   
27.
Allometry of haematological parameters (haematocrit, erythrocyte number, mean cell volume and haemoglobin concentration) of Basilichthys australis , suggested that small individuals and juveniles had larger red blood cells, less haemoglobin per volume of blood, and more diluted plasma than large and mature animals.  相似文献   
28.
We examined the effect of norepinephrine injections on non-shivering thermogenesis (NST), rewarming rate, and metabolic cost during torpor arousal in warm- and cool-acclimated Chilean mouse-opposums, Thylamys elegans. Warm- and cool-acclimated animals did not display NST in response to NE injections. Values of VO2 (resting, after saline and NE injections) were not significantly different within treatments. Rewarming rates of warm-acclimated animals did not differ significantly from those in cool-acclimated animals. In contrast, the metabolic cost of torpor arousal was significantly affected by acclimation temperature. Warm-acclimated animals required more energy for arousal than cool-acclimated animals. Our study suggests that the main thermoregulatory mechanism during torpor arousal in this Chilean marsupial is shivering thermogenesis, and that its amount can be changed by thermal acclimation.  相似文献   
29.
30.
Most evolutionary research on biological invasions has focused on changes seen between the native and invaded range for a particular species. However, it is likely that species that live in human‐modified habitats in their native range might have evolved specific adaptations to those environments, which increase the likelihood of establishment and spread in similar human‐altered environments. From a quantitative genetic perspective, this hypothesis suggests that both native and introduced populations should reside at or near the same adaptive peak. Therefore, we should observe no overall changes in the G (genetic variance–covariance) matrices between native and introduced ranges, and stabilizing selection on fitness‐related traits in all populations. We tested these predictions comparing three populations of the worldwide pest Myzus persicae from the Middle East (native range) and the UK and Chile (separately introduced ranges). In general, our results provide mixed support for this idea, but further comparisons of other species are needed. In particular, we found that there has been some limited evolution in the studied traits, with the Middle East population differing from the UK and Chilean populations. This was reflected in the structure of the G ‐matrices, in which Chile differed from both UK and Middle East populations. Furthermore, the amount of genetic variation was massively reduced in Chile in comparison with UK and Middle East populations. Finally, we found no detectable selection on any trait in the three populations, but clones from the introduced ranges started to reproduce later, were smaller, had smaller offspring, and had lower reproductive fitness than clones from the native range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号