首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416838篇
  免费   42031篇
  国内免费   200篇
  459069篇
  2018年   5080篇
  2017年   4686篇
  2016年   6573篇
  2015年   8945篇
  2014年   9949篇
  2013年   13701篇
  2012年   15733篇
  2011年   15043篇
  2010年   10113篇
  2009年   8692篇
  2008年   12958篇
  2007年   13145篇
  2006年   12383篇
  2005年   11501篇
  2004年   11196篇
  2003年   10647篇
  2002年   10367篇
  2001年   20107篇
  2000年   20209篇
  1999年   15540篇
  1998年   4908篇
  1997年   4996篇
  1996年   4830篇
  1995年   4484篇
  1994年   4393篇
  1993年   4160篇
  1992年   12371篇
  1991年   11959篇
  1990年   11476篇
  1989年   11099篇
  1988年   10231篇
  1987年   9572篇
  1986年   8733篇
  1985年   8693篇
  1984年   6997篇
  1983年   6095篇
  1982年   4577篇
  1981年   4009篇
  1980年   3751篇
  1979年   6720篇
  1978年   5034篇
  1977年   4598篇
  1976年   4178篇
  1975年   4888篇
  1974年   5092篇
  1973年   4974篇
  1972年   4618篇
  1971年   3981篇
  1970年   3695篇
  1969年   3569篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
71.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   
72.
Conditions for breaking various medically important yeasts using glass beads, 30 ml Corex centrifuge tubes, and a Vortex mixer were determined. From 75–95% ofCandida hyphal cells and all species of yeasts exceptSporothrix schenckii were broken when 10 g of 0.45–0.50 mm glass beads, 50–300 mg of wet cells in 5 ml of buffer, and 90 s of vortexing were employed. Yeasts ofSporothrix schenckii broke more efficiently when 0.25–0.30 mm beads were used.  相似文献   
73.
The sensorimotor area of rat cerebral cortex was subjected to repeated electrical stimulation at 10-min intervals, with resultant formation and progressive lengthening of self-sustained after-discharges (SSAD). One and 60 min after the third SSAD ended, we carried out an electron microscopy morphometric analysis of the agranular synaptic vesicles in type I synapses (after Gray) in the second cortical layer of the homotopic area of the unstimulated hemisphere. One minute after the seizure ended, 5.8% enlargement of the synaptic vesicles compared with the control was demonstrated in zone II of the synapse (0.1-0.2 micron from the active zone of the synapse). Neither the size nor the shape of the synaptic vesicles in the other parts of the synaptic apparatus altered. Sixty min after the seizure ended, a 5.5% enlargement of the synaptic vesicles in zone I (0.0-0.1 micron) and a 5.4% enlargement of those in zone II was found. The synaptic vesicles in zone I in the experimental animals were more oval than in the controls. Our findings support the vesicular theory and testify that hyperfunction, up to temporary exhaustion of the synaptic apparatuses, produces a change in the transmitter content of the synaptic vesicles. A raised amount of transmitter in the synaptic vesicles near the active zone could be one of the factors responsible for continued hyperexcitability of the tissue one hour after the seizure had ended. The results likewise support the concept of two mechanisms of synaptic vesicle formation, and hence of the existence of two different vesicle populations.  相似文献   
74.
Characterization of beta-lactamase from Mycobacterium butyricum ATCC 19979   总被引:2,自引:0,他引:2  
beta-lactamase has been purified to a homogeneous state from Mycobacterium butyricum ATCC 19979. The molecular weight (Mr = 29,000) and the isoelectric point (4,0) of the enzyme have been determined. The enzyme showed both penicillinase and cephalosporinase activity, but had relatively more of the former. With respect to substrate-profile the enzyme resembled the plasmid specified TEM-type beta-lactamases commonly encountered in Gram-negative bacteria. The enzyme was insensitive to p-chloromercuribenzoate, sodium chloride, or iodine inhibition.  相似文献   
75.
Calcium ionophores inhibit apoptosis in the IL-3-dependent cell line BAF3 and maintain the cells in a viable noncycling state. In this report, an identical effect of ionophore was also demonstrated on the multipotent IL-3-dependent progenitor cell line FDCP-MIX and on the primary IL-3-dependent cell population that could be cultured from murine bone marrow. Inhibition of apoptosis required extracellular calcium and could be blocked by cyclosporin A. Nuclei from IL-3-dependent cells were found to lack a calcium-activatable nuclease that degrades chromatin in the linker region between nucleosomes, unlike the nuclei of lymphoid cells. The mechanism of action of calcium ionophore could be divided into two distinct steps. First, ionophore induced the production of a survival factor that stimulated DNA synthesis and was identified as IL-4. Second, ionophore inhibited the cell cycle of the various IL-3-dependent cells. IL-4 production could be inhibited by cyclosporin A and required extracellular calcium, whereas cell cycle arrest did not. This implied that factor production was the step that was necessary for inhibition of apoptosis and maintenance of cell viability. This was confirmed by the use of an anti-IL-4R antibody, which blocked the inhibition of apoptosis induced by calcium ionophores.  相似文献   
76.
The photosynthetic reaction center complex from the green sulfur bacteriumChlorobium vibrioforme has been isolated under anaerobic conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 30, 18, 15, and 9 kDa. The 80- and 18-kDa polypeptides are identified as the reaction center polypeptide and the secondary donor cytochromec 551 encoded by thepscA andpscC genes, respectively. N-terminal amino acid sequences identify the 40-kDa polypeptide as the bacteriochlorophylla-protein of the baseplate (the Fenna-Matthews-Olson protein) and the 30-kDa polypeptide as the putative 2[4Fe-4S] protein encoded bypscB. Electron paramagnetic resonance (EPR) analysis shows the presence of an iron-sulfur cluster which is irreversibly photoreduced at 9K. Photoaccumulation at higher temperature shows the presence of an additional photoreduced cluster. The EPR spectra of the two iron-sulfur clusters resemble those of FA and FB of Photosystem I, but also show significantly differentg-values, lineshapes, and temperature and power dependencies. We suggest that the two centers are designated Center I (with calculatedg-values of 2.085, 1.898, 1.841), and Center II (with calculatedg-values of 2.083, 1.941, 1.878). The data suggest that Centers I and II are bound to thepscB polypeptide.  相似文献   
77.
78.
79.
—A resolution of the enhancement of protein synthesis in the visual cortex of rats during first exposure to light (Richardson and Rose , 1972) was achieved by polyacrylamide gel electrophoresis using a double-labelling technique. Differential incorporation of lysine was established between exposed and control animals in two fractions of the soluble proteins and seven fractions of the insoluble proteins. This suggests that exposure to a new experience of this type involves a specific effect on protein synthesis, rather than a general stimulation across all fractions.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号