首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   38篇
  321篇
  2022年   3篇
  2016年   4篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   12篇
  2011年   16篇
  2010年   6篇
  2009年   7篇
  2008年   10篇
  2007年   12篇
  2006年   8篇
  2005年   5篇
  2004年   10篇
  2003年   9篇
  2002年   9篇
  2001年   11篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   13篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   5篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1958年   2篇
排序方式: 共有321条查询结果,搜索用时 15 毫秒
91.
Colourful coexistence of red and green picocyanobacteria in lakes and seas   总被引:3,自引:0,他引:3  
Hutchinson's paradox of the plankton inspired many studies on the mechanisms of species coexistence. Recent laboratory experiments showed that partitioning of white light allows stable coexistence of red and green picocyanobacteria. Here, we investigate to what extent these laboratory findings can be extrapolated to natural waters. We predict from a parameterized competition model that the underwater light colour of lakes and seas provides ample opportunities for coexistence of red and green phytoplankton species. To test this prediction, we sampled picocyanobacteria of 70 aquatic ecosystems, ranging from clear blue oceans to turbid brown peat lakes. As predicted, red picocyanobacteria dominated in clear waters, whereas green picocyanobacteria dominated in turbid waters. We found widespread coexistence of red and green picocyanobacteria in waters of intermediate turbidity. These field data support the hypothesis that niche differentiation along the light spectrum promotes phytoplankton biodiversity, thus providing a colourful solution to the paradox of the plankton.  相似文献   
92.
BACKGROUND: Psychological stress induces rapid and long-lasting changes in blood cell composition, implying the existence of stress-induced factors that modulate hematopoiesis. Here we report the involvement of the stress-associated "readthrough" acetylcholinesterase (AChE-R) variant, and its 26 amino acid C-terminal domain (ARP) in hematopoietic stress responses. MATERIALS AND METHODS: We studied the effects of stress, cortisol, antisense oligonucleotides to AChE, and synthetic ARP on peripheral blood cell composition and clonogenic progenitor status in mice under normal and stress conditions, and on purified CD34 cells of human origin. We employed in situ hybridization and immunocytochemical staining to monitor gene expression, and 5-bromo-2-deoxyuridine (BrdU), primary liquid cultures, and clonogenic progenitor assays to correlate AChE-R and ARP with proliferation and differentiation of hematopoietic progenitors. RESULTS: We identified two putative glucocorticoid response elements in the human ACHE gene encoding AChE. In human CD34+ hematopoietic progenitor cells, cortisol elevated AChE-R mRNA levels and promoted hematopoietic expansion. In mice, a small peptide crossreacting with anti-ARP antiserum appeared in serum following forced swim stress. Ex vivo, ARP was more effective than cortisol and equally as effective as stem cell factor in promoting expansion and differentiation of early hematopoietic progenitor cells into myeloid and megakaryocyte lineages. CONCLUSIONS: Our findings attribute a role to AChE-R and ARP in hematopoietic homeostasis following stress, and suggest the use of ARP in clinical settings where ex vivo expansion of progenitor cells is required.  相似文献   
93.
94.
A debilitating fatal murine dermatitis   总被引:1,自引:0,他引:1  
  相似文献   
95.
In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.  相似文献   
96.
Ohne ZusammenfassungMeinem verehrten Lehrer, Herrn Prof.Tandler, danke ich für die geistige und materielle Unterstützung dieser Arbeit.  相似文献   
97.
Liska AJ  Shevchenko A  Pick U  Katz A 《Plant physiology》2004,136(1):2806-2817
Salinity is a major limiting factor for the proliferation of plants and inhibits central metabolic activities such as photosynthesis. The halotolerant green alga Dunaliella can adapt to hypersaline environments and is considered a model photosynthetic organism for salinity tolerance. To clarify the molecular basis for salinity tolerance, a proteomic approach has been applied for identification of salt-induced proteins in Dunaliella. Seventy-six salt-induced proteins were selected from two-dimensional gel separations of different subcellular fractions and analyzed by mass spectrometry (MS). Application of nanoelectrospray mass spectrometry, combined with sequence-similarity database-searching algorithms, MS BLAST and MultiTag, enabled identification of 80% of the salt-induced proteins. Salinity stress up-regulated key enzymes in the Calvin cycle, starch mobilization, and redox energy production; regulatory factors in protein biosynthesis and degradation; and a homolog of a bacterial Na(+)-redox transporters. The results indicate that Dunaliella responds to high salinity by enhancement of photosynthetic CO(2) assimilation and by diversion of carbon and energy resources for synthesis of glycerol, the osmotic element in Dunaliella. The ability of Dunaliella to enhance photosynthetic activity at high salinity is remarkable because, in most plants and cyanobacteria, salt stress inhibits photosynthesis. The results demonstrated the power of MS BLAST searches for the identification of proteins in organisms whose genomes are not known and paved the way for dissecting molecular mechanisms of salinity tolerance in algae and higher plants.  相似文献   
98.
An amino-terminal fusion of the human estrogen receptor α (ER) with human O6-alkylguanine-DNA alkyltransferase (AGT) enabled the observation and distinction of consecutively expressed ER populations by sequential pulse labeling of the AGT tag with different fluorescent O6-alkylguanine derivatives in live cells. The application of agonists and antagonists led to the characteristic speckled redistribution of fluorescent receptors in the nucleus as visualized by confocal microscopy. To investigate where newly synthesized receptors were localized in individual cells with respect to their older relatives in response to extracellular chemical signals, receptor expression was continued for 4 h and newly synthesized receptors were labeled with a new fluorophore spectrally distinct from the first probe. This strategy enabled a time-resolved analysis of the formation of ER-enriched protein complexes in distinct nucleoplasmic compartments. Such complexes represent important but hitherto uncharacterized macromolecular structures involved in ER function. Different, long-lasting effects were observed depending on the type of ligand. For example, 4 h after pulsed application of the partial antagonist 4-hydroxytamoxifen, the second receptor population exhibited a speckled pattern in the cell nucleus that overlapped with the first receptor population pattern. This novel finding suggests that the intranuclear positioning of receptor aggregates is not random but influenced in a ligand-dependent manner. The antagonist ICI 182,780 (7-α-[9-(4.4,5,5,5-pentafluoropentylsulfinyl)nonyl]estra-1,3,5(10)-triene-3,17-β-diol), a potent drug used in cancer treatment, led to down-regulation of the first receptor population and newly expressed receptors accumulated in the cytoplasm. In contrast, the natural agonist 17β-estradiol resulted in significantly shorter effects. Four hours after ligand application, newly expressed receptors were homogeneously distributed in the nucleus as in untreated control cells. We present the pulse labeling of AGT-ER fusion proteins with different fluorophores as a novel tool for investigating the functional regulation of nuclear receptors in individual cells.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号