首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108344篇
  免费   8407篇
  国内免费   9010篇
  125761篇
  2024年   240篇
  2023年   1418篇
  2022年   3260篇
  2021年   5514篇
  2020年   3788篇
  2019年   4703篇
  2018年   4454篇
  2017年   3241篇
  2016年   4599篇
  2015年   6683篇
  2014年   7851篇
  2013年   8316篇
  2012年   9983篇
  2011年   8974篇
  2010年   5555篇
  2009年   4974篇
  2008年   5722篇
  2007年   5145篇
  2006年   4470篇
  2005年   3501篇
  2004年   2970篇
  2003年   2724篇
  2002年   2281篇
  2001年   1880篇
  2000年   1699篇
  1999年   1679篇
  1998年   1051篇
  1997年   1008篇
  1996年   959篇
  1995年   835篇
  1994年   791篇
  1993年   628篇
  1992年   827篇
  1991年   621篇
  1990年   469篇
  1989年   455篇
  1988年   356篇
  1987年   348篇
  1986年   267篇
  1985年   288篇
  1984年   160篇
  1983年   163篇
  1982年   99篇
  1981年   87篇
  1980年   64篇
  1979年   78篇
  1977年   59篇
  1975年   56篇
  1974年   53篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
51.
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25–40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path.  相似文献   
52.
Intermittent tongue, lip and cheek forces influence precise tooth position, so we here examine the possibility that tissue remodelling driven by functional bite-force-induced jaw-strain accounts for tooth eruption. Notably, although a separate true ‘eruptive force’ is widely assumed, there is little direct evidence for such a force. We constructed a three dimensional finite element model from axial computerized tomography of an 8 year old child mandible containing 12 erupted and 8 unerupted teeth. Tissues modelled included: cortical bone, cancellous bone, soft tissue dental follicle, periodontal ligament, enamel, dentine, pulp and articular cartilage. Strain and hydrostatic stress during incisive and unilateral molar bite force were modelled, with force applied via medial and lateral pterygoid, temporalis, masseter and digastric muscles. Strain was maximal in the soft tissue follicle as opposed to surrounding bone, consistent with follicle as an effective mechanosensor. Initial numerical analysis of dental follicle soft tissue overlying crowns and beneath the roots of unerupted teeth was of volume and hydrostatic stress. To numerically evaluate biological significance of differing hydrostatic stress levels normalized for variable finite element volume, ‘biological response units’ in Nmm were defined and calculated by multiplication of hydrostatic stress and volume for each finite element. Graphical representations revealed similar overall responses for individual teeth regardless if incisive or right molar bite force was studied. There was general compression in the soft tissues over crowns of most unerupted teeth, and general tension in the soft tissues beneath roots. Not conforming to this pattern were the unerupted second molars, which do not erupt at this developmental stage. Data support a new hypothesis for tooth eruption, in which the follicular soft tissues detect bite-force-induced bone-strain, and direct bone remodelling at the inner surface of the surrounding bony crypt, with the effect of enabling tooth eruption into the mouth.  相似文献   
53.
54.
The transverse carpal ligament (TCL) forms the volar boundary of the carpal tunnel and may provide mechanical constraint to the median nerve, leading to carpal tunnel syndrome. Therefore, the mechanical properties of the TCL are essential to better understand the etiology of carpal tunnel syndrome. The purpose of this study was to investigate the in vivo TCL stiffness using acoustic radiation force impulse (ARFI) imaging. The shear wave velocity (SWV) of the TCL was measured using Virtual Touch IQTM software in 15 healthy, male subjects. The skin and the thenar muscles were also examined as reference tissues. In addition, the effects of measurement location and ultrasound transducer compression on the SWV were studied. The SWV of the TCL was dependent on the tissue location, with greater SWV values within the muscle-attached region than those outside of the muscle-attached region. The SWV of the TCL was significantly smaller without compression (5.21 ± 1.08 m/s) than with compression (6.62 ± 1.18 m/s). The SWV measurements of the skin and the thenar muscles were also affected by transducer compression, but to different extents than the SWV of the TCL. Therefore to standardize the ARFI imaging procedure, it is recommended that a layer of ultrasound gel be maintained to minimize the effects of tissue compression. This study demonstrated the feasibility of ARFI imaging for assessing the stiffness characteristics of the TCL in vivo, which has the potential to identify pathomechanical changes of the tissue.  相似文献   
55.
Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent’s emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.  相似文献   
56.
Abstract The diapause of two populations of Trichogramma evanescens Westwood (T. evanescens A and T. evanescens B), collected from different Iranian insect pests, was studied. T. evunescens A in the eggs of Corcyra cephalonica was easily induced to stable diapause with constant 8°C, 15 % and fluctuating temperature (11–23) C -11C. T. evanescens B could not be induced to diapause with the same temperatural regime and host. The experiments showed that the host of maternal generations and the ability of avoiding super-parasitism may play an important role in intraspecific variation of T. evunescens in diapause induction.  相似文献   
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号