排序方式: 共有114条查询结果,搜索用时 31 毫秒
51.
Male and female human placenta DNA was fractionated in an Ag+-Cs2SO4 density gradient. The different fractions along the gradient were analyzed by Hae III endonuclease digestion. Within the main band DNA on the light side a component having a Hae III digestion pattern similar to that of human satellite III DNA has been identified. This component which might be defined as a cryptic satellite accounts for at least 3% of the total human DNA and has a different position than human satellite III in Ag+-Cs2SO4. 相似文献
52.
Abdulsamad Alsalahi Zamri Chik Zahurin Mohamed Nelli Giribabu Mohammed Abdullah Alshawsh 《Saudi Journal of Biological Sciences》2021,28(8):4633-4643
Cathinone, the main bioactive alkaloid of Catha edulis (khat), slightly increased the blood sugar levels of healthy animals, while its effect on blood sugar levels of diabetic animals has not yet been reported. This study investigated the in vitro inhibition of cathinone on α-amylase and α-glucosidase as well as its in vivo glycemic effects in diabetes-induced rats. Rats were fed on a high fat diet for five weeks, which then intraperitoneally injected with streptozotocin (30 mg/kg). Diabetic rats were distributed randomly into diabetic control (DC, n = 5), 10 mg/kg glibenclamide-treated group (DG, n = 5), and 1.6 mg/kg cathinone-treated group (CAD, n = 5). Additional healthy untreated rats (n = 5) served as a nondiabetic negative control group. Throughout the experiment, fasting blood sugar (FBS), caloric intake and body weight were recorded weekly. By the 28th day of treatment, rats were euthanized to obtain blood samples and pancreases. The results demonstrated that cathinone exerted a significantly less potent in vitro inhibition than α-acarbose against α-amylase and α-glucosidase. As compared to diabetic control group, cathinone significantly increased FBS of diabetic rats, while insulin levels of diabetic rats significantly decreased. In conclusion, cathinone was unable to induce a substantial in vitro inhibition on α-amylase and α-glucosidase, while it exacerbated the hyperglycemia of diabetes-induced rats. 相似文献
53.
Skokowa J Ali SR Felda O Kumar V Konrad S Shushakova N Schmidt RE Piekorz RP Nürnberg B Spicher K Birnbaumer L Zwirner J Claassens JW Verbeek JS van Rooijen N Köhl J Gessner JE 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(5):3041-3050
Complement and FcgammaR effector pathways are central triggers of immune inflammation; however, the exact mechanisms for their cooperation with effector cells and their nature remain elusive. In this study we show that in the lung Arthus reaction, the initial contact between immune complexes and alveolar macrophages (AM) results in plasma complement-independent C5a production that causes decreased levels of inhibitory FcgammaRIIB, increased levels of activating FcgammaRIII, and highly induced FcgammaR-mediated TNF-alpha and CXCR2 ligand production. Blockade of C5aR completely reversed such changes. Strikingly, studies of pertussis toxin inhibition show the essential role of G(i)-type G protein signaling in C5aR-mediated control of the regulatory FcgammaR system in vitro, and analysis of the various C5aR-, FcgammaR-, and G(i)-deficient mice verifies the importance of Galpha(i2)-associated C5aR and the FcgammaRIII-FcgammaRIIB receptor pair in lung inflammation in vivo. Moreover, adoptive transfer experiments of C5aR- and FcgammaRIII-positive cells into C5aR- and FcgammaRIII-deficient mice establish AM as responsible effector cells. AM lacking either C5aR or FcgammaRIII do not possess any such inducibility of immune complex disease, whereas reconstitution with FcgammaRIIB-negative AM results in an enhanced pathology. These data suggest that AM function as a cellular link of C5a production and C5aR activation that uses a Galpha(i2)-dependent signal for modulating the two opposing FcgammaR, FcgammaRIIB and FcgammaRIII, in the initiation of the inflammatory cascade in the lung Arthus reaction. 相似文献
54.
Veli-Matti Pakanen Nelli Rönkä Thomson Robert Leslie Donald Blomqvist Kari Koivula 《Journal of avian biology》2020,51(10)
Effects of tracking devices on survival are generally considered to be small. However, most studies to date have been conducted over a time-period of only one year, neglecting the possible accumulation of negative effects and consequently stronger negative impacts on survival when the individuals have carried the tracking devices for longer periods. We studied the effects of geolocators in a closely monitored and colour-ringed southern dunlin Calidris alpina schinzii population breeding in Finland. Our capture–recapture data spans 2002–2018 and includes individual histories of 338 colour-ringed breeding adult dunlins (the term ‘recapture' includes resightings of colour-ringed and individually recognizable birds). These data include 53 adults that were fitted with leg-flag mounted geolocators in 2013–2014. We followed their fates together with other colour-ringed birds not equipped with geolocators until 2018. Geolocators were removed within 1–2 years of attachment or were not removed at all, which allowed us to examine whether carrying a geolocator reduces survival and whether the reduction in survival becomes stronger when geolocators are carried for more than one year. We fit multi-state open population capture–recapture models to the encounter history data. When assessing geolocator effects, we accounted for recapture probabilities, time since marking, and sex and year effects on survival. We found that carrying a geolocator reduced survival, which contrasts with many studies that examined return rates after one year. Importantly, survival declined with the time the individual had carried a geolocator, suggesting that the negative effects accumulate over time. Hence, the longer monitoring of birds carrying a geolocator may explain the difference from previous studies. Despite their larger mass, females tended to be more strongly affected by geolocators than males. Our results warrant caution in conducting tracking studies and suggest that short-term studies examining return rates may not reveal all possible effects of tracking devices on survival. 相似文献
55.
56.
57.
Rene Rex Nelli Bill Kerstin Schmidt-Hohagen Dietmar Schomburg 《PLoS computational biology》2013,9(10)
The Roseobacter clade is a ubiquitous group of marine α-proteobacteria. To gain insight into the versatile metabolism of this clade, we took a constraint-based approach and created a genome-scale metabolic model (iDsh827) of Dinoroseobacter shibae DFL12T. Our model is the first accounting for the energy demand of motility, the light-driven ATP generation and experimentally determined specific biomass composition. To cover a large variety of environmental conditions, as well as plasmid and single gene knock-out mutants, we simulated 391,560 different physiological states using flux balance analysis. We analyzed our results with regard to energy metabolism, validated them experimentally, and revealed a pronounced metabolic response to the availability of light. Furthermore, we introduced the energy demand of motility as an important parameter in genome-scale metabolic models. The results of our simulations also gave insight into the changing usage of the two degradation routes for dimethylsulfoniopropionate, an abundant compound in the ocean. A side product of dimethylsulfoniopropionate degradation is dimethyl sulfide, which seeds cloud formation and thus enhances the reflection of sunlight. By our exhaustive simulations, we were able to identify single-gene knock-out mutants, which show an increased production of dimethyl sulfide. In addition to the single-gene knock-out simulations we studied the effect of plasmid loss on the metabolism. Moreover, we explored the possible use of a functioning phosphofructokinase for D. shibae. 相似文献
58.
Bertram A Zhang H von Vietinghoff S de Pablo C Haller H Shushakova N Ley K 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(8):4043-4051
Protein kinase C (PKC)-θ is involved in T cell activation via regulating the avidity of the β(2) integrin LFA-1 in the immunological synapse. LFA-1 also mediates leukocyte adhesion. To investigate the role of PKC-θ in neutrophil adhesion, we performed intravital microscopy in cremaster venules of mice reconstituted with bone marrow from LysM-GFP(+) (wild-type [WT]) and PKC-θ gene-deficient (Prkcq(-/-)) mice. Following stimulation with CXCL1, both WT and Prkcq(-/-) cells became adherent. Although most WT neutrophils remained adherent for at least 180 s, 50% of Prkcq(-/-) neutrophils were detached after 105 s and most by 180 s. Upon CXCL1 injection, rolling of all WT neutrophils stopped for 90 s, but rolling of Prkcq(-/-) neutrophils started 30 s after CXCL1 stimulation. A similar neutrophil adhesion defect was seen in vitro, and spreading of Prkcq(-/-) neutrophils was delayed. Prkcq(-/-) neutrophil recruitment was impaired in fMLP-induced transmigration into the cremaster muscle, thioglycollate-induced peritonitis, and LPS-induced lung injury. We conclude that PKC-θ mediates integrin-dependent neutrophil functions and is required to sustain neutrophil adhesion in postcapillary venules in vivo. These findings suggest that the role of PKC-θ in outside-in signaling following engagement of neutrophil integrins is relevant for inflammation in vivo. 相似文献
59.
Nelli Ziegler Angel Alonso Thorsten Steinberg Dale Woodnutt Annette Kohl Eva Müssig Simon Schulz Pascal Tomakidi 《BMC cell biology》2010,11(1):10
Background
Mechano-transduction in periodontal ligament (PDL) cells is crucial for physiological and orthodontic tooth movement-associated periodontal remodelling. On the mechanistic level, molecules involved in this mechano-transduction process in PDL cells are not yet completely elucidated. 相似文献60.