首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   25篇
  315篇
  2023年   2篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   8篇
  2016年   9篇
  2015年   27篇
  2014年   18篇
  2013年   30篇
  2012年   28篇
  2011年   23篇
  2010年   22篇
  2009年   12篇
  2008年   14篇
  2007年   13篇
  2006年   14篇
  2005年   12篇
  2004年   12篇
  2003年   6篇
  2002年   9篇
  2001年   8篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
311.
Biomechanics and Modeling in Mechanobiology - The pulmonary autograft in the Ross procedure, where the aortic valve is replaced by the patient’s own pulmonary valve, is prone to failure due...  相似文献   
312.
The Nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs) but also regulates the abundance of a large number of cellular RNAs. The central role of NMD in the control of gene expression requires the existence of buffering mechanisms that tightly regulate the magnitude of this pathway. Here, we will focus on the mechanism of NMD with an emphasis on the role of RNA helicases in the transition from NMD complexes that recognize a PTC to those that promote mRNA decay. We will also review recent strategies aimed at uncovering novel trans-acting factors and their functional role in the NMD pathway. Finally, we will describe recent progress in the study of the physiological role of the NMD response.  相似文献   
313.
Detailed knowledge of histomorphology is a prerequisite for the understanding of function, variation, and development. In bats, as in other mammals, penis and baculum morphology are important in species discrimination and phylogenetic studies. In this study, nondestructive 3D‐microtomographic (microCT, µCT) images of bacula and iodine‐stained penes of Pipistrellus pipistrellus were correlated with light microscopic images from undecalcified surface‐stained ground sections of three of these penes of P. pipistrellus (1 juvenile). The results were then compared with µCT‐images of bacula of P. pygmaeus, P. hanaki, and P. nathusii. The Y‐shaped baculum in all studied Pipistrellus species has a proximal base with two club‐shaped branches, a long slender shaft, and a forked distal tip. The branches contain a medullary cavity of variable size, which tapers into a central canal of variable length in the proximal baculum shaft. Both are surrounded by a lamellar and a woven bone layer and contain fatty marrow and blood vessels. The distal shaft consists of woven bone only, without a vascular canal. The proximal ends of the branches are connected with the tunica albuginea of the corpora cavernosa via entheses. In the penis shaft, the corpus spongiosum‐surrounded urethra lies in a ventral grove of the corpora cavernosa, and continues in the glans under the baculum. The glans penis predominantly comprises an enlarged corpus spongiosum, which surrounds urethra and baculum. In the 12 studied juvenile and subadult P. pipistrellus specimens the proximal branches of the baculum were shorter and without marrow cavity, while shaft and distal tip appeared already fully developed. The present combination with light microscopic images from one species enabled a more reliable interpretation of histomorphological structures in the µCT‐images from all four Pipistrellus species. J. Morphol. 276:695–706, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
314.
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.  相似文献   
315.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号