首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   12篇
  169篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   11篇
  2019年   10篇
  2018年   10篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   13篇
  2011年   8篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
71.
This paper develops and tests an efficient mixed integer programming model for capacitated lot sizing and scheduling with non-triangular and sequence-dependent setup times and costs incorporating all necessary features of setup carryover and overlapping on different machine configurations. The model’s formulation is based on the asymmetric travelling salesman problem and allows multiple lots of a product within a period. The model conserves the setup state when no product is being processed over successive periods, allows starting a setup in a period and ending it in the next period, permits ending a setup in a period and starting production in the next period(s), and enforces a minimum lot size over multiple periods. This new comprehensive model thus relaxes all limitations of physical separation between the periods. The model is first developed for a single machine and then extended to other machine configurations, including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility and comprehensiveness of the proposed models.  相似文献   
72.
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.  相似文献   
73.
The 657del5 mutation of the NBS1 gene has been demonstrated in most patients with Nijmegen breakage syndrome (NBS). We identified four Turkish families in which probands were diagnosed as having NBS and found to be homozygous for the 657del5 mutation. The 657del5 allele in the four Turkish families had a single origin.  相似文献   
74.
This review examines the involvement of nitrotyrosine as a marker for peroxynitrite-mediated damage in the dopamine neuronal system. We propose that the dopamine neuronal phenotype can influence the cytotoxic signature of peroxynitrite. Dopamine and tetrahydrobiopterin are concentrated in dopamine neurons, and both are essential for their proper neurochemical function. It is not well appreciated that dopamine and tetrahydrobiopterin are also powerful blockers of peroxynitrite-induced tyrosine nitration. What is more, the reaction of peroxynitrite with either dopamine or tetrahydrobiopterin forms chemical species (i.e. o-quinones and pterin radicals, respectively) whose cytotoxic effects may be manifested far earlier than nitrotyrosine formation in the course of dopamine neuronal damage. A better understanding of how the dopamine neuronal phenotype modulates the effects of reactive nitrogen species could reveal early steps in drug- and disease-induced damage to the dopamine neuron and form the basis for rational, protective therapies.  相似文献   
75.
76.
The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (R?=?NH2, CH3, OH, and F) derivatives with lanthanide cations (La3+, Eu3+, Lu3+) was studied by density functional theory calculations. Theoretical approaches were also used to investigate energy and the nature of metal–ligand interaction in the model complexes. Atoms in molecules and natural bond orbital (NBO) analyses were accomplished to understand the electronic structure of ligands, L, and the related complexes, L–Ln3+. NBO analysis demonstrated that the negative charge on phosphoryl, carbonyl, and sulfoxide oxygen (OP, OC, and OS) has maximum and minimum values when the connected –R groups are –NH2 and –F. The metal–ligand distance declines as, –F?>?–OH?>?–CH3?>?–NH2. Charge density at the bond critical point and on the lanthanide cation in the L–Ln3+ complexes varies in the order –F?<?–OH?<?–CH3?<?–NH2, due to greater ligand to metal charge transfer, which is well explained by energy decomposition analysis. It was also illustrated that E(2) values of Lp(N)?→?σ*(Y–N) vary in the order P=O ? S=O ? C=O and the related values of Lp(N)?→?σ*(Y=O) change as C=O ? S=O ? P=O in (NH2)nYO ligands (Y?=?P, C, and S). Trends in the L–Ln3+ CP–corrected bond energies are in good accordance with the optimized OY?Ln distances. It seems that, comparing the three types of ligands studied, NH2–substituted are the better coordination ligands.
Graphical Abstract Density functional theory (B3LYP) calculations were used to compare structural, electronic and energy aspects of lanthanide (La, Eu, Lu) complexes of phosphine derivatives with those of carbonyls and sulfoxides in which the R– groups connected to the P=O, C=O and S=O are –NH2, –CH3, –OH and –F.
  相似文献   
77.
The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism’s life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant–pathogen interactions and integrated defense responses in rice.  相似文献   
78.
Helicobacter pylori is a Gram-negative spiral bacterium that colonizes human gastric mucosa causing infection. In this study aiming at inhibition of H. pylori infection we made an attempt to evaluate immunogenicity of the total (UreC) and C-terminal (UreCc) fragments of H. pylori urease. Total UreC and its C-terminal fragment were expressed in E. coli. Recombinant proteins were analyzed by SDS-PAGE and western blot and then purified by Ni-NTA affinity chromatography. Female C57BL6/j mice were immunized with the purified proteins (UreC and UreCc). Antibody titers from isolated sera were measured by ELISA. Immunized mice were then challenged by oral gavage with live H. pylori Sydney strain SS1. Total of 109 CFU were inoculated into stomach of immunized and unimmunized healthy mice three times each at one day interval. Eight weeks after the last inoculation, the blood sample was collected and the serum antibody titer was estimated by ELISA. Stomach tissues from control and experimental animal groups were studied histopathologically. UreC and UreCc yielded recombinant proteins of 61 and 31 kDa respectively. ELIZA confirmed establishment of immunity and the antibodies produced thereby efficiently recognized H. pylori and inhibited its colonization in vivo. Pathological analysis did not reveal established infection in immunized mice challenged with H. pylori. The results support the idea that UreC and UreCc specific antibodies contribute to protection against H. pylori infections.  相似文献   
79.
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.  相似文献   
80.
The essential oil from Teucrium polium was evaluated for its adverse effects on larval instars of Musca domestica . The essential oil was blended with a diet at a concentration that produced 50% mortality of subjected insects (LC50) (80 ppm). To learn about the situation of digestive enzymes of M. domestica treated with the essential oil, third larval instars were dissected under non-active enzyme conditions and their midguts were removed. The supernatant was used as an enzyme source after homogenization and centrifugation of the homogenates. Results revealed that some main digestive enzymes in the larval midgut were adversely affected when exposed to the food-incorporated essential oil. Proteinase extracted from larval midgut hydrolyzed the synthetic substrates B-Arg-pNA, Z-Arg-Arg-PNA and Z-Phe-Arg-PNA for trypsin, cathepsin B and cathepsin L activities, respectively, in control and treated larvae. The essential oil caused a reduction of 61.5% in tryptic activity. Significant 69% and 79% reductions were also observed in cathepsin L and B activities, respectively. Carbohydrase activities of α-amylase, α-glucosidase and β-glucosidase were detected in larval midgut extract. All assayed carbohydrases were affected by the essential oil. The most notable impact, a 93% reduction, was observed in α-amylase. Decreases of 69.5% and 42% were obtained in α-glucosidase and β-glucosidase activity, respectively. This study indicated that the larvicidal effect of the essential oil from Teucrium polium may be due to its detrimental effects on digestive enzymes. It seems that the detrimental effect of the oil can be due to both the inhibitory nature of the oil and the destruction of the midgut epithelium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号