首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
  2021年   2篇
  2017年   2篇
  2016年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1984年   3篇
  1981年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1965年   3篇
  1943年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
52.
Applied Psychophysiology and Biofeedback -  相似文献   
53.
Interference with the glucose oxidase-peroxidase method of glucose determination by the sulfhydryl agents cysteine and reduced glutathione can be overcome simply by adding N-ethylmaleimide to the assay system. A 30-fold molar excess of N-ethylmaleimide over the amount of glucose present produced no interference of its own and completely prevented the effects of cysteine and glutathione. It is suggested that this agent be added to the reaction mixture whenever it is suspected that low molecular weight sulfhydryl compounds may be present in samples to be analyzed for glucose.  相似文献   
54.
Effects of Dichloroacetate on Brain Pyruvate Dehydrogenase   总被引:4,自引:1,他引:3  
The action of dichloroacetate (DCA) on pyruvate dehydrogenase (PDH) activity of rat brain has been studied in vitro and in vivo. In a crude brain mitochondrial fraction, DCA inhibits PDH kinase and in rat brain slices this compound increases PDH activity and stimulates glucose oxidation. In the whole animal, intraperitoneal injection of DCA causes activation of brain PDH, indicating that this inhibitor crosses the blood-brain barrier. The same treatment with DCA also produced a large increase in heart PDH activity. Further studies of the effects of DCA on the CNS should lead to results of considerable importance.  相似文献   
55.
56.
The urinary bladder depends on intracellular ATP to support a number of essential intracellular processes including contraction. The concentration of ATP is maintained by mitochondrial oxidative phosphorylation, cytosolic glycolysis and the cytosolic activity of creatine kinase, the enzyme that catalysis the rapid transfer of a phosphate from creatine phosphate (CP) to ADP resulting in the formation of ATP.Prior studies in this lab and others have demonstrated that mitochondrial respiration is significantly lower in hypertrophied bladder tissue (induced by partial outlet obstruction of the white New Zealand Rabbit). In addition to decreased mitochondrial respiration, there are significant increases in glycolysis and lactic acid formation in the hypertrophied tissue.In view of the increased glycolysis and decreased mitochondrial function in the hypertrophied tissue, and the importance in creatine kinase in maintaining cytosolic levels of ATP, the current study was designed to determine if outlet obstruction induces any changes in the activity of creatine kinase.The following is a summary of the results: 1) The bladder mass increased from 2.2 ± 0.2 gm to 11.5 ±1.6 gm at 7 days following outlet obstruction. 2) The intracellular concentrations of both ATP and CP were significantly reduced in the bladder tissue following 7 days of obstruction. 3) The percent of protein (per tissue mass) was significantly lower in the obstructed bladders, although the percent of soluble protein was similar. 4) Creatine kinase activity of control bladders showed linear kinetics with a Vmax = 1120 nmoles/mg protein/4 min and Km = 147 µM CP. 2) The creatine kinase activity of obstructed bladders also displayed linear kinetics with a Vmax = 1125 nmoles/mg protein/4 min tissue, and Km = 276 µM CP.These studies demonstrate that whereas both control and obstructed bladders have virtually identical maximum creatine kinase activities, the Km for the obstructed tissue is significantly higher than the Km for the control tissue. This may indicate that under cellular conditions (at sub-maximum substrate concentrations), the creatine kinase activity of the obstructed bladders may be significantly lower than the activity of the control bladders. In addition, the reduced tissue concentrations of ATP and CP would certainly be consistent with the reduced functional response to bethanechol and field stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号