首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19735篇
  免费   2017篇
  国内免费   7篇
  2021年   282篇
  2020年   173篇
  2019年   222篇
  2018年   228篇
  2017年   238篇
  2016年   380篇
  2015年   658篇
  2014年   779篇
  2013年   937篇
  2012年   1101篇
  2011年   1055篇
  2010年   691篇
  2009年   601篇
  2008年   874篇
  2007年   963篇
  2006年   865篇
  2005年   883篇
  2004年   825篇
  2003年   733篇
  2002年   765篇
  2001年   488篇
  2000年   443篇
  1999年   416篇
  1998年   251篇
  1997年   211篇
  1996年   195篇
  1995年   184篇
  1994年   196篇
  1993年   176篇
  1992年   278篇
  1991年   274篇
  1990年   284篇
  1989年   248篇
  1988年   251篇
  1987年   286篇
  1986年   205篇
  1985年   236篇
  1984年   224篇
  1983年   208篇
  1982年   179篇
  1981年   165篇
  1980年   152篇
  1979年   201篇
  1978年   196篇
  1977年   144篇
  1976年   152篇
  1975年   152篇
  1974年   166篇
  1973年   150篇
  1972年   168篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Typical 2-Cys peroxiredoxins are required to remove hydrogen peroxide from several different cellular compartments. Their activity can be regulated by hyperoxidation and consequent inactivation of the active-site peroxidatic cysteine. Here we developed a simple assay to quantify the hyperoxidation of peroxiredoxins. Hyperoxidation of peroxiredoxins can only occur efficiently in the presence of a recycling system, usually involving thioredoxin and thioredoxin reductase. We demonstrate that there is a marked difference in the sensitivity of the endoplasmic reticulum-localized peroxiredoxin to hyperoxidation compared with either the cytosolic or mitochondrial enzymes. Each enzyme is equally sensitive to hyperoxidation in the presence of a robust recycling system. Our results demonstrate that peroxiredoxin IV recycling in the endoplasmic reticulum is much less efficient than in the cytosol or mitochondria, leading to the protection of peroxiredoxin IV from hyperoxidation.  相似文献   
52.
53.
Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS) levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m3, and low noise. A linear relationship (R2 = 0.98) was observed between the monitor and average SHS mass concentrations up to 150 µg/m3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches.  相似文献   
54.
55.
56.
57.
58.
59.
Peroxisomal membrane proteins (PMPs) from the Swiss-Webster mouse are analyzed and compared to those of rats and humans using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. A purification procedure for fresh mouse, rat, or human biopsy liver which enriches peroxisomal/mitochondrial marker enzyme ratios over 100-fold is characterized. When analyzed by SDS-PAGE, membranes of purified liver peroxisomes are shown to contain the same complement of 145-, 70-, 55-, 36-, and 22-kDa PMPs in rats, mice, and humans. A rabbit polyclonal antibody raised against mouse peroxisomal membranes demonstrates immunoreactivity to 145- and 70-kDa proteins in fresh liver homogenates from all three species and in control or Zellweger syndrome fibroblasts from humans. Human autopsy or placental tissues which were refrigerated before analysis exhibited 105-, 55-, and 36-kDa peptides which may be derived from the 145- and 70-kDa peptides. Such conversions, if related to degradation, may explain difficulties in purifying peroxisomes from human autopsy specimens. Variable amounts of the 55-kDa peptide also occurred in mouse adrenal and lung, and the conversion of higher to lower molecular weight PMPs could not be demonstrated by in vitro incubation of mouse liver. Further definition of the structure and variability of mammalian PMPs should be helpful in understanding polyenzymopathies such as Zellweger syndrome.  相似文献   
60.
The types of inositol phosphates (InsPs) formed in response to activation of alpha 1-adrenergic receptor subtypes were determined in collagenase-dispersed renal cells and hepatocytes by high pressure liquid chromatography separation. In hepatocytes, which contain only the alpha 1b subtype, norepinephrine stimulated rapid (10-s) formation of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 and slower (5-min) formation of Ins(1,4)P2 and Ins(1)P. Selective inactivation of alpha 1b receptors by chloroethylclonidine almost completely blocked the effects of norepinephrine in hepatocytes. In renal cells, which contain both alpha 1a and alpha 1b receptors in a 60:40 ratio, norepinephrine did not significantly increase the size of any peaks until 5 min after agonist activation. At this time, only a peak eluting with Ins(1)P and one eluting shortly after Ins(1,4)P2 were significantly elevated. Incubation with norepinephrine for 2 h caused small but significant increases in peaks co-eluting with Ins(1)P and Ins(1,4,5)P3 in renal cells; however, only the increase in Ins(1)P was inhibited by chloroethylclonidine pretreatment. Extraction under neutral conditions suggested that cyclic InsPs may be the primary compounds formed in response to norepinephrine in renal cells. Removal of extracellular Ca2+ caused a 60% reduction in the InsP response to norepinephrine in renal cells but had no effect in hepatocytes. These results suggest that activation of alpha 1a and alpha 1b receptor subtypes results in formation of different InsPs and that the response to alpha 1a activation may require influx of extracellular Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号