首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   30篇
  国内免费   1篇
  168篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   11篇
  2010年   4篇
  2009年   8篇
  2008年   12篇
  2007年   3篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1968年   2篇
  1932年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
91.
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the critical C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.  相似文献   
92.
The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.  相似文献   
93.
Indole-3-acetic acid (IAA) labeled in its carboxyl group was metabolized by tobacco leaf discs (Nicotiana tabacum L. cv. Xanthi) into three metabolites, two of which were preliminarily characterized as a peptide and an ester-conjugated IAA. Reapplication of each of the three metabolites (at 10 μM) resulted in a marked stimulation of ethylene production and decarboxylation by the leaf discs. Similarly, these three IAA metab olites could induce elongation of wheat coleoptile segments, which was accompanied by decarboxylation. Both the exogenously supplied esteric and peptidic IAA conjugates were converted by the leaf discs into the same metabolites as free IAA. (1-14C)IAA, applied to an isolated epidermis tissue, was completely metabolized to the esteric and peptidic IAA conjugates. This epidermis tissue showed much higher ethylene production rates and lower decarboxylation rates than did the whole leaf disc. The results suggest that the participation of IAA conjugates in the regulation of various physiological processes depends on the release of free IAA, which is obtained by enzymatic hydrolysis of the conjugates in the tissue. The present study demonstrates biological activity of endogenous IAA conjugates that were synthesized by tobacco leaf discs in response to exogenously supplied IAA.  相似文献   
94.
95.
Starches extracted from most plant species are phosphorylated. α-Glucan water dikinase (GWD) is a key enzyme that controls the phosphate content of starch. In the absence of its activity starch degradation is impaired, leading to a starch excess phenotype in Arabidopsis and in potato leaves, and to reduced cold sweetening in potato tubers. Here, we characterized a transposon insertion ( legwd::Ds ) in the tomato GWD ( LeGWD ) gene that caused male gametophytic lethality. The mutant pollen had a starch excess phenotype that was associated with a reduction in pollen germination. SEM and TEM analyses indicated mild shrinking of the pollen grains and the accumulation of large starch granules inside the plastids. The level of soluble sugars was reduced by 1.8-fold in mutant pollen grains. Overall, the transmission of the mutant allele was only 0.4% in the male, whereas it was normal in the female. Additional mutant alleles, obtained through transposon excision, showed the same phenotypes as legwd::Ds . Moreover, pollen germination could be restored, and the starch excess phenotype could be abolished in lines expressing the potato GWD homolog ( StGWD ) under a pollen-specific promoter. In these lines, where fertility was restored, homozygous plants for legwd::Ds were isolated, and showed the starch excess phenotype in the leaves. Overall, our results demonstrate the importance of starch phosphorylation and breakdown for pollen germination, and open up the prospect for analyzing the role of starch metabolism in leaves and fruits.  相似文献   
96.
97.
We examined the effect of replacing wheat hay with soy hulls on thermoregulatory responses and feeding behavior under summer condition in dairy cows. Milk yield, feed intake, meal size, and number, heart rate and heat production were similar in the two dietary groups. Visit duration and time spent eating were shorter, and body temperature was higher in the soy hulls fed cows. It was concluded that supplying soy hulls can enable cows subjected to heat load conditions to reduce the costs of feed ingestion. However, the contribution of this tool to the overall energy budget is rather small.  相似文献   
98.
The anatomy of strawberry (Fragaria x ananassa) fruit, in which the achene is found on the outer part of the fruit, makes it an excellent species for studying the regulation of fruit development. It can provide a model for the cross talk between primary and secondary metabolism, whose role is of pivotal importance in the process. By combining gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry with the aim of addressing the metabolic regulation underlying fruit seed development, we simultaneously analyzed the composition of primary and secondary metabolites, separately, in achene and receptacle during fruit ripening of strawberry cultivar Herut. The results from these analyses suggest that changes in primary and secondary metabolism reflect organ and developmental specificities. For instance, the receptacle was characterized by increases in sugars and their direct derivatives, while the achene was characterized by a major decrease in the levels of carbon- and nitrogen-rich compounds, with the exception of storage-related metabolites (e.g. raffinose). Furthermore, the receptacle, and to a lesser extent the achene, exhibited dynamic fluctuations in the levels and nature of secondary metabolites across the ripening process. In the receptacle, proanthocyanidins and flavonol derivatives characterized mainly early developmental stages, while anthocyanins were abundant in the mature red stage; in the achene, ellagitannin and flavonoids were abundant during early and late development, respectively. Correlation-based network analysis suggested that metabolism is substantially coordinated during early development in either organ. Nonetheless, a higher degree of connectivity within and between metabolic pathways was measured in the achenes. The data are discussed within the context of current models both of the interaction of primary and secondary metabolism and of the metabolic interaction between the different plant organs.  相似文献   
99.
LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery. LifeMap Discovery is freely available to academic nonprofit institutions at http://discovery.lifemapsc.com  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号