首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   38篇
  国内免费   1篇
  2024年   1篇
  2023年   6篇
  2022年   22篇
  2021年   36篇
  2020年   18篇
  2019年   14篇
  2018年   45篇
  2017年   30篇
  2016年   49篇
  2015年   62篇
  2014年   42篇
  2013年   48篇
  2012年   71篇
  2011年   62篇
  2010年   28篇
  2009年   18篇
  2008年   16篇
  2007年   13篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  1997年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有605条查询结果,搜索用时 156 毫秒
71.
Gandhi NS  Coombe DR  Mancera RL 《Biochemistry》2008,47(17):4851-4862
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell-cell adhesion. PECAM-1 has been shown to mediate cell-cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.  相似文献   
72.
73.
74.
75.
Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits that were either enriched in or lacking acetylation of α-tubulin lysine 40 (K40) or detyrosination of the α-tubulin C-terminal tail. We show that K40 acetylation does not result in significant changes in kinesin-1’s landing rate or motility parameters (velocity and run length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1’s landing rate. The fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate influences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1 transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.  相似文献   
76.
77.
The production of biofuels from lignocellulosic biomass appears to be attractive and viable due to the abundance and availability of this biomass. The hydrolysis of this biomass, however, is challenging because of the complex lignocellulosic structure. The ability to produce hydrolytic cellulase enzymes in a cost-effective manner will certainly accelerate the process of making lignocellulosic ethanol production a commercial reality. These cellulases may need to be produced aerobically to generate large amounts of protein in a short time or anaerobically to produce biofuels from cellulose via consolidated bioprocessing. Therefore, it is important to identify a promoter that can constitutively drive the expression of cellulases under both aerobic and anaerobic conditions without the need for an inducer. Using lacZ as reporter gene, we analyzed the strength of the promoters of four genes, namely lacZ, gapA, ldhA and pflB, and found that the gapA promoter yielded the maximum expression of the β-galactosidase enzyme under both aerobic and anaerobic conditions. We further cloned the genes for two cellulolytic enzymes, β-1,4-endoglucanase and β-1,4-glucosidase, under the control of the gapA promoter, and we expressed these genes in Escherichia coli, which secreted the products into the extracellular medium. An ethanologenic E. colistrain transformed with the secretory β-glucosidase gene construct fermented cellobiose in both defined and complex medium. This recombinant strain also fermented wheat straw hydrolysate containing glucose, xylose and cellobiose into ethanol with an 85% efficiency of biotransformation. An ethanologenic strain that constitutively secretes a cellulolytic enzyme is a promising platform for producing lignocellulosic ethanol.  相似文献   
78.
The present study demonstrated the combined effect of 24-epibrassinolide and salicylic acid against lead (Pb, 0.25, 0.50, and 0.75 mM) toxicity in Brassica juncea seedlings. Various parameters including water status, metal uptake, total water- and lipid-soluble antioxidants, metal chelator content (total thiols, protein-bound thiols, and non-protein-bound thiols), phenolic compounds (flavonoids, anthocyanins, and polyphenols), and organic acids were studied in 10-day-old seedlings. Dry matter content and the heavy metal tolerance index were reduced by 42.24 and 52.3%, respectively, in response to Pb treatment. Metal uptake, metal-chelating compounds, phenolic compounds, and organic acids were increased in Pb-treated seedlings as compared to control plants. The treatment of Pb-stressed seedlings with combination of EBL and SA resulted in enhancement of heavy metal tolerance index by 40.07%, water content by 1.84%, and relative water content by 23.45%. The total water- and lipid-soluble antioxidants were enhanced by 21.01 and 2.21%, respectively. In contrast, a significant decline in dry weight, metal uptake, thiol, and polyphenol contents was observed following the application of 24-epibrassinolide and salicylic acid. These observations indicate that Pb treatment has an adverse effect on B. juncea seedlings. However, co-application of 24-epibrassinolide and salicylic acid mitigates the negative effects of Pb, by lowering Pb metal uptake and enhancing the heavy metal tolerance index, water content, relative water content, antioxidative capacities, phenolic content, and organic acid levels.  相似文献   
79.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号