全文获取类型
收费全文 | 969篇 |
免费 | 59篇 |
国内免费 | 1篇 |
专业分类
1029篇 |
出版年
2023年 | 12篇 |
2022年 | 30篇 |
2021年 | 44篇 |
2020年 | 26篇 |
2019年 | 24篇 |
2018年 | 55篇 |
2017年 | 41篇 |
2016年 | 63篇 |
2015年 | 68篇 |
2014年 | 70篇 |
2013年 | 72篇 |
2012年 | 108篇 |
2011年 | 94篇 |
2010年 | 46篇 |
2009年 | 34篇 |
2008年 | 29篇 |
2007年 | 27篇 |
2006年 | 25篇 |
2005年 | 14篇 |
2004年 | 19篇 |
2003年 | 7篇 |
2002年 | 12篇 |
2001年 | 11篇 |
2000年 | 15篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 6篇 |
1990年 | 7篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 7篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1978年 | 1篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有1029条查询结果,搜索用时 15 毫秒
31.
Juliette Gaëtan Sébastien Halary Maxime Millet Cécile Bernard Charlotte Duval Sahima Hamlaoui Amandine Hecquet Muriel Gugger Benjamin Marie Neha Mehta David Moreira Fériel Skouri-Panet Cynthia Travert Elodie Duprat Julie Leloup Karim Benzerara 《Environmental microbiology》2023,25(3):751-765
The formation of intracellular amorphous calcium carbonates (iACC) has been recently observed in a few cultured strains of Microcystis, a potentially toxic bloom-forming cyanobacterium found worldwide in freshwater ecosystems. If iACC-forming Microcystis are abundant within blooms, they may represent a significant amount of particulate Ca. Here, we investigate the significance of iACC biomineralization by Microcystis. First, the presence of iACC-forming Microcystis cells has been detected in several eutrophic lakes, indicating that this phenomenon occurs under environmental conditions. Second, some genotypic (presence/absence of ccyA, a marker gene of iACC biomineralization) and phenotypic (presence/absence of iACC) diversity have been detected within a collection of strains isolated from one single lake. This illustrates that this trait is frequent but also variable within Microcystis even at a single locality. Finally, one-third of publicly available genomes of Microcystis were shown to contain the ccyA gene, revealing a wide geographic and phylogenetic distribution within the genus. Overall, the present work shows that the formation of iACC by Microcystis is common under environmental conditions. While its biological function remains undetermined, this process should be further considered regarding the biology of Microcystis and implications on the Ca geochemical cycle in freshwater environments. 相似文献
32.
A K Jaiswal S N Upadhyay S K Bhattacharya 《Indian journal of experimental biology》1991,29(6):532-537
The study was conducted on 64 Charles Foster strain albino rats, which were equally distributed into 8 evenly matched groups, following a 2 x 2 x 2 factorial design, by varying three independent factors at two levels: nutrition--normal and undernutrition; environment--enrichment and impoverishment, and drug treatment--vehicle and dihydroergotoxine (3 mg/kg, i.p.). Prenatal undernutrition was induced by restricting the mother's food intake. The environmental enrichment/impoverishment and the vehicle/dihydroergotoxine treatments were given during the postweaning period of the pups. The rats were subjected to original and subsequent reversal brightness discrimination learning tests in a single unit T-maze at 8-9 weeks of age. Thereafter, the animals were tested for passive avoidance learning. The results indicate that undernutrition caused significant original and reversal discrimination learning, deficits whereas environmental deprivation attenuated only the original discrimination learning performance. Dihydroergotoxine treatment facilitated the learning performance of rats in both the original and reversal learning tests. Nutritional, environmental and dihydroergotoxine treatments had no effect on the retention of the passive avoidance learning, both at 24 hr and 1 week intervals. Dihydroergotoxine treatment attenuated the learning deficits induced by prenatal undernutrition. The results indicate that dihydroergotoxine is not likely to be useful in cognitive deficits, induced by malnutrition, though it facilitated learning acquisition, since it had no effect on retention. 相似文献
33.
34.
35.
The quinone oxidoreductases [NAD(P)H:quinone oxidoreductase1 (NQO1) and NRH:quinone oxidoreductase2 (NQO2)] are flavoproteins. NQO1 is known to catalyse metabolic detoxification of quinones and protect cells from redox cycling, oxidative stress and neoplasia. NQO2 is a 231 amino acid protein (25956 mw) that is 43 amino acids shorter than NQO1 at its carboxy-terminus. The human NQO2 cDNA and protein are 54 and 49% similar to the human liver cytosolic NQO1 cDNA and protein. Recent studies have revealed that NQO2 differs from NQO1 in its cofactor requirement. NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. Another difference between NQO1 and NQO2 is that NQO2 is resistant to typical inhibitors of NQO1, such as dicoumarol, Cibacron blue and phenindone. Flavones, including quercetin and benzo(a)pyrene, are known inhibitors of NQO2. Even though overlapping substrate specificities have been observed for NQO1 and NQO2, significant differences exist in relative affinities for the various substrates. Analysis of the crystal structure of NQO2 revealed that NQO2 contains a specific metal binding site, which is not present in NQO1. The human NQO2 gene has been precisely localized to chromosome 6p25. The human NQO2 gene locus is highly polymorphic. The NQO2 gene is ubiquitously expressed and induced in response to TCDD. Nucleotide sequence analysis of the NQO2 gene promoter revealed the presence of several cis-elements, including SP1 binding sites, CCAAT box, xenobiotic response element (XRE) and an antioxidant response element (ARE). The complement of these elements regulates tissue specific expression and induction of the NQO2 gene in response to xenobiotics and antioxidants. The in vivo role of NQO2 and its role in quinone detoxification remains unknown. 相似文献
36.
37.
38.
Stefan Highsmith Mark Kubinec Devendra K. Jaiswal Hiromi Morimoto Philip G. Williams David E. Wemmer 《Journal of biomolecular NMR》1993,3(3):325-334
Summary The synthesis of [2-3H]ATP with specific activity high enough to use for 3H NMR spectroscopy at micromolar concentrations was accomplished by tritiodehalogenation of 2-Br-ATP. ATP with greater than 80% substitution at the 2-position and negligible tritium levels at other positions had a single 3H NMR peak at 8.20 ppm in 1D spectra obtained at 533 MHz. This result enables the application of tritium NMR spectroscopy to ATP utilizing enzymes.The proteolytic fragment of skeletal muscle myosin, called S1, consists of a heavy chain (95 kDa) and one alkali light chain (16 or 21 kDa) complex that retains myosin ATPase activity. In the presence of Mg2+, S1 converts [2-3H]ATP to [2-3H]ADP and the complex S1.Mg[2-3H]ADP has ADP bound in the active site. At 0°C, 1D 3H NMR spectra of S1.Mg[2-3H]ADP have two broadened peaks shifted 0.55 and 0.90 ppm upfield from the peak due to free [2-3H]ADP. Spectra with good signal-to-noise for 0.10 mM S1.Mg[2-3H]ADP were obtained in 180 min. The magnitude of the chemical shift caused by binding is consistent with the presence of an aromatic side chain being in the active site. Spectra were the same for S1 with either of the alkali light chains present, suggesting that the alkali light chains do not interact differently with the active site. The two broad peaks appear to be due to the two conformations of S1 that have been observed previously by other techniques. Raising the temperature to 20 °C causes small changes in the chemical shifts, narrows the peak widths from 150 to 80 Hz, and increases the relative area under the more upfield peak. Addition of orthovanadate (Vi) to produce S1.Mg[2-3H]ADP.Vi shifts both peaks slightly more upfield without chaning their widths or relative areas. 相似文献
39.
Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain. 相似文献
40.
Neha Patel David Hoang Nathan Miller Sara Ansaloni Qihong Huang Jack T Rogers Jeremy C Lee Aleister J Saunders 《Molecular neurodegeneration》2008,3(1):1-6
A number of studies have shown that increased APP levels, resulting from either a genomic locus duplication or alteration in APP regulatory sequences, can lead to development of early-onset dementias, including Alzheimer's disease (AD). Therefore, understanding how APP levels are regulated could provide valuable insight into the genetic basis of AD and illuminate novel therapeutic avenues for AD. Here we test the hypothesis that APP protein levels can be regulated by miRNAs, evolutionarily conserved small noncoding RNA molecules that play an important role in regulating gene expression. Utilizing human cell lines, we demonstrate that miRNAs hsa-mir-106a and hsa-mir-520c bind to their predicted target sequences in the APP 3'UTR and negatively regulate reporter gene expression. Over-expression of these miRNAs, but not control miRNAs, results in translational repression of APP mRNA and significantly reduces APP protein levels. These results are the first to demonstrate that levels of human APP can be regulated by miRNAs. 相似文献