首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   37篇
  国内免费   1篇
  592篇
  2024年   1篇
  2023年   8篇
  2022年   20篇
  2021年   35篇
  2020年   18篇
  2019年   14篇
  2018年   45篇
  2017年   30篇
  2016年   48篇
  2015年   56篇
  2014年   41篇
  2013年   46篇
  2012年   69篇
  2011年   63篇
  2010年   28篇
  2009年   18篇
  2008年   19篇
  2007年   14篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
排序方式: 共有592条查询结果,搜索用时 15 毫秒
511.
A field study was carried out to investigate the effect of three Zn levels 0, 20 kg ZnSO4 ha−1 and 20 kg ZnSO4 ha−1+ foliar spray of 0.5 % ZnSO4 on superoxide dismutase activity, acid phosphatase activity and grain yield and a pot experiment to study the effect of zinc deficient and sufficient conditions on organic acid exudation. Increasing Zn levels was established as beneficial in improving the enzyme activities of genotypes. Combined foliar and soil application of Zn proved to be superior of all the treatments. Zinc application resulted in a maximum increment limit of 96.8 % in superoxide dismutase activity, 75.76 % in acid phosphatase activity, and a decrement limit of 88.57 % in oxalic acid exudation irrespective of stages and year of study. The increased enzyme activities had a positive impact on grain yield. As an average of all genotypes an improvement of 19.88 % in 2009 and 21.29 % in 2010 due to soil application while of 16.45 % in 2009 and 13.01 % in 2010 due to combined application was calculated for grain yield. There existed a variation among genotypes in showing responses towards zinc application and the genotypes UP 2584 and PBW 550 were found to be more responsive.  相似文献   
512.
513.
The α-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant α-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of α-1,4-d-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. In this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.  相似文献   
514.
A series of propiophenone derivatives (6-23) have been synthesized and evaluated for their in vivo antihyperglycemic activities in sucrose loaded model (SLM), sucrose challenged streptozotocin (STZ-S) induced diabetic rat model and C57BL/KsJ db/db diabetic mice model. Compound 15 and 16 were emerged as potent antihyperglycemics and lipid lowering agents. These compounds (15, 16) further validate the potency by reducing body weight and food intake in db/db mice model. Possible mechanism of action for the propiophenone derivatives was established by the evaluation in various in vitro models. Interestingly some of the compounds were efficiently inhibiting PTP-1B.  相似文献   
515.
Several spectroscopic approaches namely fluorescence, time‐resolved fluorescence, UV‐visible, and Fourier transform infra‐red (FT‐IR) spectroscopy were employed to examine the interaction between ethane‐1,2‐diyl bis(N,N‐dimethyl‐N‐hexadecylammoniumacetoxy)dichloride (16‐E2‐16) and bovine serum albumin (BSA). Fluorescence studies revealed that 16‐E2‐16 quenched the BSA fluorescence through a static quenching mechanism, which was further confirmed by UV–visible and time‐resolved fluorescence spectroscopy. In addition, the binding constant and the number of binding sites were also calculated. The thermodynamic parameters at different temperatures (298 K, 303 K, 308 K and 313 K) indicated that 16‐E2‐16 binding to BSA is entropy driven and that the major driving forces are electrostatic interactions. Decrease of the α‐helix from 53.90 to 46.20% with an increase in random structure from 22.56 to 30.61% were also observed by FT‐IR. Furthermore, the molecular docking results revealed that 16‐E2‐16 binds predominantly by electrostatic and hydrophobic forces to some residues in the BSA sub‐domains IIA and IIIA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
516.
517.
518.
Oxidative stress-induced PARP activation has been recognized to be a main factor in the pathogenesis of cisplatin-induced nephrotoxicity. Accumulating literature has revealed that ACE inhibitors may exert beneficial effect in several disease models via preventing PARP activation. Based on this hypothesis, we have evaluated the renoprotective effect of enalapril, an ACE inhibitor, and its underlying mechanism(s) in cisplatin-induced renal injury in rats. Male Albino Wistar rats were orally administered normal saline or enalapril (10, 20 and 40?mg/kg) for 10 days. Nephrotoxicity was induced by a single dose of cisplatin (8?mg/kg; i.p.) on the 7th day. The animals were thereafter sacrificed on the 11th day and both the kidneys were excised and processed for biochemical, histopathological, molecular, and immunohistochemical studies. Enalapril (40?mg/kg) significantly prevented cisplatin-induced renal dysfunction. In comparison to cisplatin-treated group, the elevation of BUN and creatinine levels was significantly less in this group. This improvement in kidney injury markers was well substantiated with reduced PARP expression along with phosphorylation of MAPKs including JNK/ERK/p38. Enalapril, in a dose-dependent fashion, attenuated cisplatin-induced oxidative stress as evidenced by augmented GSH, SOD and catalase activities, reduced TBARS and oxidative DNA damage (8-OHDG), and Nox-4 protein expression. Moreover, enalapril dose dependently inhibited cisplatin-induced inflammation (NF-κB/IKK-β/IL-6/Cox-2/TNF-α expressions), apoptosis (increased Bcl-2 and reduced p53, cytochrome c, Bax and caspase-3 expressions, and TUNEL/DAPI positivity) and preserved the structural integrity of the kidney. Thus, enalapril attenuated cisplatin-induced renal injury via inhibiting PARP activation and subsequent MAPKs/TNF-α/NF-κB mediated inflammatory and apoptotic response.  相似文献   
519.
Both the lack of a credible malaria vaccine and the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative need to develop new drugs against malaria. In present work, α-pyranochalcones and pyrazoline analogs were synthesized to discover chemically diverse antimalarial leads. Compounds were tested for antimalarial activity by evaluation of the growth of malaria parasite in culture using the microtiter plate based SYBR-Green-I assay. The (E)-3-(3-(2,3,4-trimethoxyphenyl)-acryloyl)-2H-chromen-2-one (Ga6) turned out to be the most potent analog of the series, showing IC50 of 3.1 μg/ml against chloroquine-sensitive (3D7) strain and IC50 of 1.1 μg/ml against chloroquine-resistant field isolate (RKL9) of Plasmodium falciparum. Cytotoxicity study of the most potent compounds was also performed against HeLa cell line using the MTT assay. All the tested compounds showed high therapeutic indices suggesting that they were selective in their action against the malaria parasite. Furthermore, docking of Ga6 into active site of falcipain enzyme revealed its predicted interactions with active site residues. This is the first instance wherein chromeno-pyrazolines have been found to be active antimalarial agents. Further exploration and optimization of this new lead could provide novel, antimalarial molecules which can ward off issues of cross-resistance to drugs like chloroquine.  相似文献   
520.

Introduction

Mammalian cells like Chinese hamster ovary (CHO) cells are routinely used for production of recombinant therapeutic proteins. Cells require a continuous supply of energy and nutrients to sustain high cell densities whilst expressing high titres of recombinant proteins. Cultured mammalian cells are primarily dependent on glucose and glutamine metabolism for energy production.

Objectives

The TCA cycle is the main source of energy production and its continuous flow is essential for cell survival. Modulated regulation of TCA cycle can affect ATP production and influence CHO cell productivity.

Methods

To determine the key metabolic reactions of the cycle associated with cell growth in CHO cells, we transiently silenced each gene of the TCA cycle using RNAi.

Results

Silencing of at least four TCA cycle genes was detrimental to CHO cell growth. With an exception of mitochondrial aconitase (or Aco2), all other genes were associated with ATP production reactions of the TCA cycle and their resulting substrates can be supplied by other anaplerotic and cataplerotic reactions. This study is the first of its kind to have established key role of aconitase gene in CHO cells. We further investigated the temporal effects of aconitase silencing on energy production, CHO cell metabolism, oxidative stress and recombinant protein production.

Conclusion

Transient silencing of mitochondrial aconitase inhibited cell growth, reduced ATP production, increased production of reactive oxygen species and reduced cell specific productivity of a recombinant CHO cell line by at least twofold.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号