首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   1篇
  1997年   1篇
  1993年   2篇
  1984年   1篇
  1975年   2篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
51.
The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation.  相似文献   
52.
Molecular Biology Reports - Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine involved in the regulation of the immune system and potentially the progression of cervical...  相似文献   
53.
Mammalian prions     
Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.  相似文献   
54.
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1(KO) mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1(KO) mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42) was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.  相似文献   
55.

Background

We study the role of gonadectomy on the response to unavoidable stress and the role of testosterone replacement on gonadectomy in the male Naval Medical Research Institute mice (30±5 g) were studied. For this purpose, the hormonal and metabolic changes were investigated.

Methods

In the experimental group, the gonads were surgically removed, and a cannula was inserted into the left lateral ventricle. For acute and chronic stress induction, animals were placed in the communication box for 30 min for one day and four consecutive days, respectively. The animals received different doses of intraventricular (ICV) testosterone (0.01, 0.05, 0.1 μg/mouse) 5 minutes or intraperitoneal (IP) testosterone (0.05, 0.01, 0.1 mg/kg) 30 minutes before the stress induction.

Results

The results showed that acute and chronic stress increases plasma cortisol concentration. IP testosterone injections of testosterone did not decrease cortisol concentrations in response to acute stress, whereas ICV injections did reduce cortisol concentrations. The stress reduced anorexia time, while the administration of testosterone increased anorexia time. In addition, acute stress reduced food intake in the gonadectomized mice. IP testosterone at 0.01 and 0.05 mg/kg increased food intake. Additionally, stress in gonadectomized mice reduced water intake, while the IP injection of testosterone in chronic stress further reduced water intake. Also, stress reduced the animals’ brain/adrenal volumes, while the IP and ICVinjection of testosterone at 0.01 mg/kg inhibited this effect.

Conclusion

The results showed that the IP (0.05, 0.01, 0.1 mg/kg) and ICV (0.01, 0.05, 0.1 μg/mouse) administration of testosterone in the gonadectomized mice can modulate hormonal and metabolic changes induced by stress.
  相似文献   
56.
Thrombin is a procoagulant inflammatory agonist that can disrupt the endothelium-lumen barrier in the lung by causing contraction of endothelial cells and promote pulmonary cell proliferation. Both contraction and proliferation require increases in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)). In this study, we compared the effect of thrombin on Ca(2+) signaling in human pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells. Thrombin increased the [Ca(2+)](cyt) in both cell types; however, the transient response was significantly higher and recovered quicker in the PASMC, suggesting different mechanisms may contribute to thrombin-mediated increases in [Ca(2+)](cyt) in these cell types. Depletion of intracellular stores with cyclopiazonic acid (CPA) in the absence of extracellular Ca(2+) induced calcium transients representative of those observed in response to thrombin in both cell types. Interestingly, CPA pretreatment significantly attenuated thrombin-induced Ca(2+) release in PASMC; this attenuation was not apparent in PAEC, indicating that a PAEC-specific mechanism was targeted by thrombin. Treatment with a combination of CPA, caffeine, and ryanodine also failed to abolish the thrombin-induced Ca(2+) transient in PAEC. Notably, thrombin-induced receptor-mediated calcium influx was still observed in PASMC after CPA pretreatment in the presence of extracellular Ca(2+). Ca(2+) oscillations were triggered by thrombin in PASMC resulting from a balance of extracellular Ca(2+) influx and Ca(2+) reuptake by the sarcoplasmic reticulum. The data show that thrombin induces increases in intracellular calcium in PASMC and PAEC with a distinct CPA-, caffeine-, and ryanodine-insensitive release existing only in PAEC. Furthermore, a dynamic balance between Ca(2+) influx, intracellular Ca(2+) release, and reuptake underlie the Ca(2+) transients evoked by thrombin in some PASMC. Understanding of such mechanisms will provide an important insight into thrombin-mediated vascular injury during hypertension.  相似文献   
57.
When nutrients are depleted, Dictyostelium cells undergo cell cycle arrest and initiate a differentiation program for survival. We have found a novel gene, srsA, which is rapidly expressed in the first 5 min following the removal of nutrients and is turned off within an hour. This gene encodes a small protein with no significant similarity to previously characterized proteins. Disruption of srsA results in delayed expression of the early genes acaA and carA that encode adenylyl cyclase and the cAMP receptor necessary for chemotactic aggregation, respectively. Streaming is delayed several hours and the aggregates are larger than normal in the mutant strains. These phenotypes are cell-autonomous. Overexpression of srsA also results in delayed aggregation. Some of the slugs of the srsA(OE) strains showed stalked migration reminiscent of the slugs of the related species Dictyostelium mucoroides. The terminal structures formed by srsA(OE) cells were grossly abnormal and contained very few viable spores. When cells overexpressing srsA were developed together with an excess of wild-type cells, the fruiting bodies were still abnormal, indicating that the mutant cells have a dominant effect on late development. These findings suggest that srsA may be involved in both the starvation response and late differentiation.  相似文献   
58.
We used microarrays carrying most of the genes that are developmentally regulated in Dictyostelium to discover those that are preferentially expressed in prestalk cells. Prestalk cells are localized at the front of slugs and play crucial roles in morphogenesis and slug migration. Using whole-mount in situ hybridization, we were able to verify 104 prestalk genes. Three of these were found to be expressed only in cells at the very front of slugs, the PstA cell type. Another 10 genes were found to be expressed in the small number of cells that form a central core at the anterior, the PstAB cell type. The rest of the prestalk-specific genes are expressed in PstO cells, which are found immediately posterior to PstA cells but anterior to 80% of the slug that consists of prespore cells. Half of these are also expressed in PstA cells. At later stages of development, the patterns of expression of a considerable number of these prestalk genes changes significantly, allowing us to further subdivide them. Some are expressed at much higher levels during culmination, while others are repressed. These results demonstrate the extremely dynamic nature of cell-type-specific expression in Dictyostelium and further define the changing physiology of the cell types. One of the signals that affect gene expression in PstO cells is the hexaphenone DIF-1. We found that expression of about half of the PstO-specific genes were affected in a mutant that is unable to synthesize DIF-1, while the rest appeared to be DIF independent. These results indicate that differentiation of some aspects of PstO cells can occur in the absence of DIF-1.  相似文献   
59.
Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies.  相似文献   
60.
While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through its multiple, modular domains. To address the biological importance of ITSN in regulating cellular signaling pathways versus in endocytosis, we have stably silenced ITSN expression in neuronal cells by using short hairpin RNAs. Decreasing ITSN expression dramatically increased apoptosis in both neuroblastoma cells and primary cortical neurons. Surprisingly, the loss of ITSN did not lead to major defects in the endocytic pathway. Yeast two-hybrid analysis identified class II phosphoinositide 3'-kinase C2beta (PI3K-C2beta) as an ITSN binding protein, suggesting that ITSN may regulate a PI3K-C2beta-AKT survival pathway. ITSN associated with PI3K-C2beta on a subset of endomembrane vesicles and enhanced both basal and growth factor-stimulated PI3K-C2beta activity, resulting in AKT activation. The use of pharmacological inhibitors, dominant negatives, and rescue experiments revealed that PI3K-C2beta and AKT were epistatic to ITSN. This study represents the first demonstration that ITSN, independent of its role in endocytosis, regulates a critical cellular signaling pathway necessary for cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号