首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   7篇
  285篇
  2023年   2篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2016年   13篇
  2015年   11篇
  2014年   18篇
  2013年   15篇
  2012年   21篇
  2011年   22篇
  2010年   16篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   16篇
  2005年   8篇
  2004年   15篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1964年   3篇
  1963年   1篇
排序方式: 共有285条查询结果,搜索用时 15 毫秒
61.
62.
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response.  相似文献   
63.
Extracellular polysaccharides synthesized by Azospirillum brasilense and A. lipoferum were shown on agar plates and liquid flocculating cultures. The six strains used in this work expressed a mucoid phenotype, yielding positive calcofluor fluorescence under UV light. The calcofluor-binding polysaccharides were distributed between the capsular and exopolysaccharide fractions, suggesting exocellular localization. No calcofluor fluorescence was observed in residual cells after separation of the capsular and exopolysaccharide fractions. Cellulose content was significantly higher in flocculating than in nonflocculating cultures. Failure to induce flocculation by addition of cellulose (100 mg/ml) to nonflocculating cultures, together with the sensitivity of flocs to cellulase digestion, suggested that cellulose is involved in maintenance of floc stability. Different A. brasilense and A. lipoferum strains bound to a wheat lectin (fluorescein isothiocyanate-wheat germ agglutinin), indicating the occurrence of specific sugar-bearing receptors for wheat germ agglutinin on the cell surface. The biochemical specificity of the reaction was shown by hapten inhibition with N-acetyl-D-glucosamine. All six strains failed to recognize fluorescein isothiocyanate-soybean seed lectin under our experimental conditions. We conclude that azospirilla produce exocellular polysaccharides with calcofluor- and lectin-binding properties.  相似文献   
64.
Structural plasticity of mammalian cytochromes P450 (CYP) has recently been explored in our laboratory and elsewhere to understand the ligand-binding promiscuity. CYP2B4 exhibits very different conformations and thermodynamic signatures in binding the small inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) versus the large bifonazole. Using four key active-site mutants (F296A, T302A, I363A, and V367L) that are involved in binding one or both inhibitors, we dissected the thermodynamic basis for the ability of CYP2B4 to bind substrates and inhibitors of different sizes and chemistry. In all cases, 1:1 binding stoichiometry was observed. The inhibitors 4-CPI, 1-(4-chlorophenyl)imidazole, and 1-(2-(benzyloxy)ethyl)imidazole bind to the mutants with a free energy difference (ΔΔG) of ∼ 0.5 to 1 kcal/mol compared with the wild type but with a large entropy-enthalpy compensation of up to 50 kcal/mol. The substrate testosterone binds to all four mutants with a ΔΔG of ∼ 0.5 kcal/mol but with as much as 40 kcal/mol of entropy-enthalpy compensation. In contrast, benzphetamine binding to V367L and F296A is accompanied by a ΔΔG of ∼ 1.5 and 3 kcal/mol, respectively. F296A, I363A, and V367L exhibit very different benzphetamine metabolite profiles, indicating the different substrate-binding orientations in the active site of each mutant. Overall, the findings indicate that malleability of the active site allows mammalian P450s to exhibit a high degree of thermodynamic fidelity in ligand binding.  相似文献   
65.
66.
Identification of a novel autoantigen UACA in patients with panuveitis   总被引:2,自引:0,他引:2  
To identify the target autoantigens in Vogt-Koyanagi-Harada disease, we made use of an immunoscreening of a bovine uveal cDNA expression library with serum samples obtained from patients with Vogt-Koyanagi-Harada disease. We identified a novel bovine antigen and homologous human autoantigen and designated it as UACA (uveal autoantigen with coiled coil domains and ankyrin repeats). mRNA of human UACA is expressed most abundantly in skeletal muscles and in various human tissues, including choroid, retina, and epidermal melanocytes. IgG autoantibodies were quantitated in an ELISA, using recombinant C-terminal 18.0% fragment of human UACA. The prevalence of IgG anti-UACA autoantibodies in patients with panuveitis (Vogt-Koyanagi-Harada disease, Beh?et's disease, sarcoidosis) was significantly higher than that in healthy controls (19.6-28.1% vs 0%, P < 0.05) indicating that autoimmunity directed against UACA is a common phenomenon in these diseases.  相似文献   
67.
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure–activity relationship.  相似文献   
68.
A protocol for induction and establishment of Agrobacterium rhizogenes-mediated hairy root cultures of Picrorhiza kurroa was developed through optimization of the explant type and the most suitable bacterial strain. The infection of leaf explants with the LBA9402 strain resulted in the emergence of hairy roots at 66.7% relative transformation frequency. Nine independent, opine and TL-positive hairy root clones were studied for their growth and specific glycoside (i.e., kutkoside and picroside I) productivities at different growth phases. Biosynthetic potentials for the commercially desirable active constituents have been expressed by all the tested hairy root clones, although distinct inter-clonal variations could be noted in terms of their quantity. The yield potentials of the 14-P clone, both in terms of biomass as well as individual glycoside contents (i.e., kutkoside and picroside I), superseded that of all other hairy root clones along with the non-transformed, in vitro-grown control roots of P. kurroa. The present communication reports the first successful establishment, maintenance, growth and selection of superior hairy root clone of Picrorhiza kurroa with desired phyto-molecule production potential, which can serve as an effective substitute to its roots and thereby prevent the indiscriminate up-rooting and exploitation of this commercially important, endangered medicinal plant species. CIMAP Publication No.: 2007-28J  相似文献   
69.
Fast-growing hairy root cultures of Picrorhiza kurroa induced by Agrobacterium rhizogenes offers a potential production system for iridoid glycosides. In present study we have investigated the effects of various nutrient medium formulations viz B5, MS, WP and NN, and sucrose concentrations (1–8%) on the biomass and glycoside production of selected clone (14-P) of P. kurroa hairy root. Full strength B5 medium was found to be most suitable for maximum biomass yield on the 40th day of culture (GI = 32.72 ± 0.44) followed by the NN medium of the same strength (GI = 22.9 ± 0.43). Secondary metabolite production was 1.1 and 1.3 times higher in half strength B5 medium respectively in comparison to MS medium. Maximum biomass accumulation along with the maximum picroliv content was achieved with 4% sucrose concentration in basal medium. RT vitamin and Thiamine-HCl effected the growth and secondary metabolite production of hairy roots growing on MS medium but did not show any effect on other media. The pH of the medium played significant role in growth and secondary metabolite production and was found to be highest at pH 6.0 while lowest at pH 3.0 and pH 8.0. To enhance the production of biomass and Picroliv 5 liter working capacity bioreactor was used, 27-fold (324 g FW) higher growth was observed in bioreactor than shake flask and secondary metabolite production was similarly enhanced.  相似文献   
70.
The measles virus (MV) fusion apparatus consists of a fusion protein and an attachment protein named hemagglutinin (H). After receptor-binding through its cuboidal head, the H-protein transmits the fusion-triggering signal through its stalk to the fusion protein. However, the structural basis of signal transmission is unclear because only structures of H-heads without their stalk have been solved. On the other hand, the entire ectodomain structure of the hemagglutinin-neuraminidase protein of another Paramyxovirus revealed a four-helix bundle stalk. To probe the structure of the 95-residue MV H-stalk we individually substituted head-proximal residues (positions 103–153) with cysteine, and biochemically and functionally characterized the resultant proteins. Our results indicate that most residues in the central segment (positions 103–117) can be cross-linked by engineered disulfide bonds, and thus may be engaged in a tetrameric structure. While covalent tetramerization disrupts fusion triggering function, disulfide bond reduction restores it in most positions except Asp-113. The next stalk segment (residues 123–138) also has high propensity to form covalent tetramers, but since these cross-links have little or no effect on function, it can conduct the fusion-triggering signal while remaining in a stabilized tetrameric configuration. This segment may act as a spacer, maintaining H-heads at an optimal height. Finally, the head-proximal segment (residues 139–154) has very limited propensity to trap tetramers, suggesting bifurcation into two flexible linkers clamped by inter-subunit covalent links formed by natural Cys-139 and Cys-154. We discuss the modular structure of the MV H-stalk in the context of membrane fusion triggering and cell entry by Paramyxoviruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号