首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   11篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   8篇
  2019年   15篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   13篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有119条查询结果,搜索用时 31 毫秒
81.
Quercus infectoria, commonly known as gall oak, is a small shrub found in Iran. Unfortunately, it is subjected to genetic erosion, and so, its conservation and evaluation are desirable. Thus, in the current research, 16 microsatellite primer pairs (seven nuclear simple sequence repeats (nSSRs) and nine chloroplast simple sequence repeats (cpSSRs)) were used in an attempt to assess the genetic diversity of 121 individuals of Q. infectoria belonging to 11 populations from three provinces in northern Zagros forests of Iran. In total, 69 alleles of nSSR and 18 alleles of cpSSR were detected among the individuals. The results of the overall analysis of molecular variance based on nSSRs indicated that 89.00% of the variation was due to differences within populations and 11.00% occurred among populations, while according to cpSSRs, 94.00% of the variation resided among populations, and only 6.00% could be attributed to variation within populations. A higher genetic differentiation of Q. infectoria populations was found according to cpSSR data in comparison to nSSR data. Cophenetic correlation coefficient values were statistically insignificant between nSSR and cpSSR data. The unweighted pair group method with arithmetic mean and Bayesian cluster analyses grouped the studied individuals into two main clusters based on both nSSR and cpSSR data. nSSR data could not completely clustered individuals next each other according to their geographical collection area. Information detailed by nSSR loci revealed that north-Zagros gall oak preserves average levels of genetic diversity at the species level, high level of within-population genetic diversity, and moderate level of genetic variation among populations. The present results provide valuable data for in situ or ex situ conservation and utilization of the studied germplasm.  相似文献   
82.
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography‐tandem mass spectrometry (LC‐MS3) analysis. C. trachomatis (serovar D, MOI 1)–infected HeLa‐229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis–infected HeLa‐229 cells indicate complex host‐pathogen interactions at early phase of chlamydial infection.  相似文献   
83.
84.
BackgroundAutism is a disease of complex nature with a significant genetic component. The importance of renin-angiotensin system (RAS) elements in cognition and behavior besides the interaction of angiotensin II (Ang II), the main product of angiotensin-converting enzyme (ACE), with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in autism. Since the genetic architecture of autism has remained elusive, here we postulated that genetic variations in RAS are associated with autism.MethodsConsidering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291) with the level of ACE activity, we have investigated this association with autism, in a case-control study. Genotype and allele frequencies of polymorphisms were determined in DNAs extracted from venous blood of 120 autistic patients and their age and sex-matched healthy controls, using polymerase chain reaction (PCR) and PCR–restriction fragment length polymorphism (PCR–RFLP) methods.ResultsThere were strong associations between both DD genotype of ACE I/D and the D allele, with autism (P = 0.006, OR = 2.9, 95% CI = 1.64–5.13 and P = 0.006, OR = 2.18, 95% CI = 1.37–3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and autism was observed (P = 0.006, OR = 1.84, 95%CI = 1.26–2.67). Moreover, haplotype analysis revealed an association between DTG haplotype and autism (P = 0.008).ConclusionOur data suggests the involvement of RAS genetic diversity in increasing the risk of autism.  相似文献   
85.
The present study was designed to examine the role of opioidergic and glutamatergic systems on feeding behavior in neonatal meat-type chicken. In experiment 1, FD3 neonatal broilers ICV injected with (A) saline, (B) DAMGO (µ-opioid receptor agonist, 125 pmol), (C) MK-801 (NMDA glutamate receptors antagonist, 15 nmol) and (D) combination of DAMGO plus MK-801. Experiments 2–5 were similar to experiment 1, except FD3 chicks ICV injected with CNQX (AMPA glutamate receptors antagonist, 390 nmol), AIDA (mGLU1 receptors antagonist, 2 nmol), LY341495 (mGLU2 receptors antagonist, 150 nmol) and UBP1112 (mGLU3 receptors antagonist, 2 nmol) instead of MK-801, respectively. In experiments 6–10, FD3 chicks ICV injected as the same as procedure to the experiments 1–5, except to inject with DPDPE (δ-opioid receptor agonist, 40 nmol) instead of the DAMGO. The experiments 11–15 were similar to the experiments 1–5, except neonatal broilers ICV injected with U-50488H (κ-opioid receptor agonist, 30 nmol) instead of DAMGO. Then the cumulative food intake measured until 120 min post injection. According to the results, ICV injection of DAMGO, significantly decreased food intake (P?<?0.05) while DPDPE and U-50488H increased feeding behavior compared to the control group (P?<?0.05). Co-injection of the DAMGO?+?MK-801 and DAMGO?+?AIDA, significantly decreased DAMGO-induced hypophagia in neonatal chicks (P?<?0.05). Also, co-injection of the DPDPE?+?CNQX significantly amplified DPDPE induced feeding behavior (P?<?0.05). These results suggested interconnection between central opioidergic and glutamatergic systems on feeding behavior mediates via µ- and δ-opioid receptor with NMDA, AMPA and mGLU1 receptors in FD3 neonatal broilers. These findings may shed light on the circuitry underlying interconnection between central opioidergic and glutamatergic systems on feeding behavior.  相似文献   
86.
Interventions against obesity, are mainly around changing calorie intake and energy expenditure. Recently, some studies focused on the influence of circadian time of food intake on metabolic status. Here, we compare the role of calorie restriction and time restricted feeding followed by high-fat diet started post weaning, First, 52 male Wistarrats (3 weeks old) were divided into two groups: the high-fat diet (HFD, n = 42) and the control group (CON1, n = 11). After 17 weeks, five rats were randomly selected from each group for sample preparation. In the second phase, the animals in HFD group were assigned into four groups (n = 9): (1) 30% calorie restriction (CR), (2) day intermittent fasting (DIF), (3) night intermittent fasting (NIF), (4) adlibitum food intake (AL), (5) remained animal from the first phase control (CON2). Seventeen weeks of HFD started post-weaning did not cause fatty liver but it caused a significant difference in the body and the adipose tissue weight (P0.05). The results showed that longtime HFD did not lead to liver steatosis while the incorrect time of food intake predisposes the animal to the upcoming liver disease. This data indicate a significant role of timing of food intake rather than nutrition composition itself.  相似文献   
87.
Further structure-activity relationships of a novel series of fungal efflux pump inhibitors with respect to potentiation of the activity of fluconazole against strains of C. albicans and C. glabrata over-expressing ABC-type efflux pumps are systematically explored. Rat protein binding and pharmacokinetics of selected analogues are reported.  相似文献   
88.
The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4‐dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo‐like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4‐Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double‐strand breaks. Taken together, we propose that the concerted action of DDK, Polo‐like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.  相似文献   
89.
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号