首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   13篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   8篇
  2019年   14篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
81.
The 14-bp polymorphism in exon 8 of the HLA-G gene is associated with HLA-G mRNA stability and the patterns of alternative isoform splicing and may influence the functionality of the HLA-G molecule. HLA-G expression was related to allograft acceptance and fewer episodes of acute rejection during heart, kidney and liver–kidney transplantation. In order to determine a possible correlation between the 14-bp insertion/deletion polymorphism and kidney allograft outcome in our population, genomic DNA was isolated from 144 patients who had received isolated kidney allografts. The recipients was divided into two groups, grafts presenting features of rejection group and a non-rejection group, and compared them with a control group of 100 healthy subjects. There was no significant difference in allelic frequencies of 14-bp insertion/deletion polymorphism between normal controls and kidney transplant patients. No significant difference was found between the RG and the NRG regarding the 14-bp genotypes and alleles. Therefore, additional studies with more sample size from other populations with analysis of other HLA-G polymorphisms are necessary to define this polymorphism as a valuable clinical marker.  相似文献   
82.
83.
Diabetes Mellitus is characterized by chronic hyperglycemia and associated with an increased production of reactive oxygen species (ROS). Oxidative stress is the result of accumulation of free radicals in tissues which specially affects beta cells in pancreas. Glutathione S-transferases (GSTs) are a family of antioxidant enzymes that include several classes of GSTs. These enzymes have important roles in decreasing of ROS species and act as a kind of antioxidant defense. To investigate the association between GSTs polymorphism with type 2 diabetes mellitus (T2DM), we investigated the frequency of GSTM1, T1 and P1 genotypes in patients with T2DM and controls. The genotypes of GSTT1, M1 and P1 were determined in 171 clinically documented T2DM patients and 169 normal cases (as controls) by multiplex polymerase chain reaction and PCR–RFLP. In diabetic patients, the frequency of GSTM1-null genotype was significantly (OR?=?1.74; 95?% CI?=?1.13–2.69, P?=?0.016) higher than that in control. However, the frequency of GSTT1 (OR?=?1.29; 95?% CI?=?0.07–2.14, P?=?0.367) and GSTP1 (OR?=?0.83; 95?% CI?=?0.53–1.30, P?=?0.389) genotypes were not significantly different comparing both groups. Also, the frequency of both GSTT1-null and GSTM1-null genotypes in patients (19.88?%) was significantly higher compared to controls with the same genotypes (11.83?%, P?=?0.022). Our results indicated that GSTM1 and GSTT1 genotypes might be involved in the pathogenesis of T2DM in south Iranian population.  相似文献   
84.
Claudins (Cld) are essential constituents of tight junctions. Domain I of Clostridium perfringens enterotoxin (cCPE) binds to the second extracellular loop (ECL2) of a subset of claudins, e.g. Cld3/4 and influences tight junction formation. We aimed to identify interacting interfaces and to alter claudin specificity of cCPE. Mutagenesis, binding assays, and molecular modeling were performed. Mutation-guided ECL2 docking of Cld3/4 onto the crystal structure of cCPE revealed a common orientation of the proposed ECL2 helix-turn-helix motif in the binding cavity of cCPE: residues Leu(150)/Leu(151) of Cld3/4 bind similarly to a hydrophobic pit formed by Tyr(306), Tyr(310), and Tyr(312) of cCPE, and Pro(152)/Ala(153) of Cld3/4 is proposed to bind to a second pit close to Leu(223), Leu(254), and Leu(315). However, sequence variation in ECL2 of these claudins is likely responsible for slightly different conformation in the turn region, which is in line with different cCPE interaction modes of Cld3 and Cld4. Substitutions of other so far not characterized cCPE residues lining the pocket revealed two spatially separated groups of residues (Leu(223), Asp(225), and Arg(227) and Leu(254), lle(258), and Asp(284)), which are involved in binding to Cld3 and Cld4, albeit differently. Involvement of Asn(148) of Cld3 in cCPE binding was confirmed, whereas no evidence for involvement of Lys(156) or Arg(157) was found. We show structure-based alteration of cCPE generating claudin binders, which interact subtype-specific preferentially either with Cld3 or with Cld4. The obtained mutants and mechanistic insights will advance the design of cCPE-based modulators to target specific claudin subtypes related either to paracellular barriers that impede drug delivery or to tumors.  相似文献   
85.
The present study was designed to examine the role of opioidergic and glutamatergic systems on feeding behavior in neonatal meat-type chicken. In experiment 1, FD3 neonatal broilers ICV injected with (A) saline, (B) DAMGO (µ-opioid receptor agonist, 125 pmol), (C) MK-801 (NMDA glutamate receptors antagonist, 15 nmol) and (D) combination of DAMGO plus MK-801. Experiments 2–5 were similar to experiment 1, except FD3 chicks ICV injected with CNQX (AMPA glutamate receptors antagonist, 390 nmol), AIDA (mGLU1 receptors antagonist, 2 nmol), LY341495 (mGLU2 receptors antagonist, 150 nmol) and UBP1112 (mGLU3 receptors antagonist, 2 nmol) instead of MK-801, respectively. In experiments 6–10, FD3 chicks ICV injected as the same as procedure to the experiments 1–5, except to inject with DPDPE (δ-opioid receptor agonist, 40 nmol) instead of the DAMGO. The experiments 11–15 were similar to the experiments 1–5, except neonatal broilers ICV injected with U-50488H (κ-opioid receptor agonist, 30 nmol) instead of DAMGO. Then the cumulative food intake measured until 120 min post injection. According to the results, ICV injection of DAMGO, significantly decreased food intake (P?<?0.05) while DPDPE and U-50488H increased feeding behavior compared to the control group (P?<?0.05). Co-injection of the DAMGO?+?MK-801 and DAMGO?+?AIDA, significantly decreased DAMGO-induced hypophagia in neonatal chicks (P?<?0.05). Also, co-injection of the DPDPE?+?CNQX significantly amplified DPDPE induced feeding behavior (P?<?0.05). These results suggested interconnection between central opioidergic and glutamatergic systems on feeding behavior mediates via µ- and δ-opioid receptor with NMDA, AMPA and mGLU1 receptors in FD3 neonatal broilers. These findings may shed light on the circuitry underlying interconnection between central opioidergic and glutamatergic systems on feeding behavior.  相似文献   
86.
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography‐tandem mass spectrometry (LC‐MS3) analysis. C. trachomatis (serovar D, MOI 1)–infected HeLa‐229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis–infected HeLa‐229 cells indicate complex host‐pathogen interactions at early phase of chlamydial infection.  相似文献   
87.
BackgroundAutism is a disease of complex nature with a significant genetic component. The importance of renin-angiotensin system (RAS) elements in cognition and behavior besides the interaction of angiotensin II (Ang II), the main product of angiotensin-converting enzyme (ACE), with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in autism. Since the genetic architecture of autism has remained elusive, here we postulated that genetic variations in RAS are associated with autism.MethodsConsidering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291) with the level of ACE activity, we have investigated this association with autism, in a case-control study. Genotype and allele frequencies of polymorphisms were determined in DNAs extracted from venous blood of 120 autistic patients and their age and sex-matched healthy controls, using polymerase chain reaction (PCR) and PCR–restriction fragment length polymorphism (PCR–RFLP) methods.ResultsThere were strong associations between both DD genotype of ACE I/D and the D allele, with autism (P = 0.006, OR = 2.9, 95% CI = 1.64–5.13 and P = 0.006, OR = 2.18, 95% CI = 1.37–3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and autism was observed (P = 0.006, OR = 1.84, 95%CI = 1.26–2.67). Moreover, haplotype analysis revealed an association between DTG haplotype and autism (P = 0.008).ConclusionOur data suggests the involvement of RAS genetic diversity in increasing the risk of autism.  相似文献   
88.
Further structure-activity relationships of a novel series of fungal efflux pump inhibitors with respect to potentiation of the activity of fluconazole against strains of C. albicans and C. glabrata over-expressing ABC-type efflux pumps are systematically explored. Rat protein binding and pharmacokinetics of selected analogues are reported.  相似文献   
89.
Interventions against obesity, are mainly around changing calorie intake and energy expenditure. Recently, some studies focused on the influence of circadian time of food intake on metabolic status. Here, we compare the role of calorie restriction and time restricted feeding followed by high-fat diet started post weaning, First, 52 male Wistarrats (3 weeks old) were divided into two groups: the high-fat diet (HFD, n = 42) and the control group (CON1, n = 11). After 17 weeks, five rats were randomly selected from each group for sample preparation. In the second phase, the animals in HFD group were assigned into four groups (n = 9): (1) 30% calorie restriction (CR), (2) day intermittent fasting (DIF), (3) night intermittent fasting (NIF), (4) adlibitum food intake (AL), (5) remained animal from the first phase control (CON2). Seventeen weeks of HFD started post-weaning did not cause fatty liver but it caused a significant difference in the body and the adipose tissue weight (P0.05). The results showed that longtime HFD did not lead to liver steatosis while the incorrect time of food intake predisposes the animal to the upcoming liver disease. This data indicate a significant role of timing of food intake rather than nutrition composition itself.  相似文献   
90.
The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4‐dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo‐like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4‐Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double‐strand breaks. Taken together, we propose that the concerted action of DDK, Polo‐like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号