首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   56篇
  2023年   6篇
  2022年   7篇
  2021年   18篇
  2020年   14篇
  2019年   22篇
  2018年   24篇
  2017年   29篇
  2016年   24篇
  2015年   29篇
  2014年   46篇
  2013年   51篇
  2012年   75篇
  2011年   80篇
  2010年   51篇
  2009年   43篇
  2008年   50篇
  2007年   52篇
  2006年   45篇
  2005年   53篇
  2004年   38篇
  2003年   31篇
  2002年   34篇
  2001年   23篇
  2000年   17篇
  1999年   16篇
  1998年   12篇
  1997年   6篇
  1996年   9篇
  1995年   5篇
  1994年   3篇
  1993年   12篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
  1944年   1篇
排序方式: 共有1046条查询结果,搜索用时 15 毫秒
151.
In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure. There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403–410, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
152.
Heart failure secondary to ischemic cardiomyopathy is the primary cause of cardiovascular mortality. The promise of the collateral circulation lies in its potential to alter the course of the natural history of coronary heart disease. The collateral circulation of the heart is responsible for supplying blood and oxygen to the myocardium at ischemic risk following severe stenosis and reduced vasoelasticity function of a major coronary artery. In response to flow, stress, and pressure, collateral vessels are restructured and remodeled. Vascular remodeling by its very nature implies synthesis and degradation of extracellular matrix components in the vessel wall. Under normal physiological conditions proteinases that break down the specialized matrix are tightly regulated by antiproteinases. The balance between proteinase and antiproteinase influences is discoordinated during collateral development which leads to adaptive changes in the structure, function, and regulation of extracellular matrix components in the vessel wall. The role of extracellular matrix components in coronary collateral vessel formation in a canine model of chronic coronary artery occlusion has been demonstrated. The role of matrix proteinases and antiproteinases in the collateral vessel play a significant role in the underlying mechanisms of collateral development. This review presents new and significant information regarding the role of extracellular matrix proteinases and antiproteinases in vascular remodeling, function, and collateral development. Such information will have a significant impact on the understanding of the basic biology of the vascular extracellular matrix turnover, remodeling, and function as well as on elucidating potential avenues for pharmacological approaches designed to increase collateral formation and optimize myocardial blood flow in the treatment of ischemic heart disease. J. Cell. Biochem. 65:388–394. © 1997 Wiley-Liss, Inc.  相似文献   
153.
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM−1s−1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.  相似文献   
154.
155.
156.
157.
Nephrotic syndrome (NS) is a kidney disease predominantly present in children with idiopathic condition; final stage of the disease progresses into end-stage renal disease. Generally, NS is treated using standard steroid therapy, however; most of the children are steroid sensitive and about 15–20% are non-responders (SRNS). Non-responsiveness of these children would be a risk with the possibility of mutational changes in podocyte genes (NPHS1, NPHS2, WT1, PLCE1). The mutation in podocyte genes is associated with SRNS. NPHS1, NPHS2, and WT1 genes are identified/directly linked to SRNS. The present study is a surveillance on the mutation analysis of WT1 (exons 8 and 9) and NPHS2 (exons 1–8) gene in SRNS followed by clinical management. In the present study, we analyzed these two genes in a total of 117 SRNS (73 boys and 44 girls) children. A total of five mutations were detected in six children. First, WT1 mutation was detected at 9th intron-IVS 9 + 4C > T position in one SRNS female patient. This WT1 mutation was identified in a girl having Frasier Syndrome (FS) with focal segmental glomerulosclerosis and a complete sex reversal found through molecular and karyological screening. In NPHS2, missense mutations of P20L (in two children), P316S, and p.R229Q, and a frame shift mutation of 42delG were detected. Thus, applying molecular investigation helped us to decide on treatment plan of SRNS patients, mainly to avoid unnecessary immunosuppressive treatment.  相似文献   
158.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   
159.
A20/AN1 zinc-finger domain-containing proteins are well characterized in animals, and their role in regulating the immune response is established. Recently, such A20/AN1 zinc-finger proteins have been reported from plants. These plant proteins are involved in stress response, but their exact molecular mechanism of action is yet to be deciphered. Sequence information available in public databases has been used to conduct a survey of A20/AN1 zinc-finger proteins across diverse organisms with a special emphasis on plants. Domain analysis provides some interesting insights into their biological function, the most important being that A20/AN1 zinc-finger proteins could represent common elements of stress response in plants and animals.  相似文献   
160.
Imaging individual mRNA molecules using multiple singly labeled probes   总被引:1,自引:0,他引:1  
We describe a method for imaging individual mRNA molecules in fixed cells by probing each mRNA species with 48 or more short, singly labeled oligonucleotide probes. This makes each mRNA molecule visible as a computationally identifiable fluorescent spot by fluorescence microscopy. We demonstrate simultaneous detection of three mRNA species in single cells and mRNA detection in yeast, nematodes, fruit fly wing discs, and mammalian cell lines and neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号