首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   14篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   9篇
  2013年   14篇
  2012年   23篇
  2011年   21篇
  2010年   13篇
  2009年   14篇
  2008年   16篇
  2007年   17篇
  2006年   20篇
  2005年   16篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有254条查询结果,搜索用时 31 毫秒
41.
Hyperhomocysteinemia, an increased level of plasma homocysteine, is an independent risk factor for the development of premature arterial fibrosis with peripheral and cerebro-vascular, neurogenic and hypertensive heart disease, coronary occlusion and myocardial infarction, as well as venous thromboembolism. It is reported that hyperhomocysteinemia causes vascular dysfunction by two major routes: (1) increasing blood pressure and, (2) impairing the vasorelaxation activity of endothelial-derived nitric oxide. The homocysteine activates metalloproteinases and induces collagen synthesis and causes imbalances of elastin/collagen ratio which compromise vascular elastance. The metabolites from hyperhomocysteinemic endothelium could modify components of the underlying muscle cells, leading to vascular dysfunction and hypertension. Homocysteine metabolizes in the body to produce H2S, which is a strong antioxidant and vasorelaxation factor. At an elevated level, homocysteine inactivates proteins by homocysteinylation including its endogenous metabolizing enzyme, cystathionine γ-lyase. Thus, reduced production of H2S during hyperhomocysteinemia exemplifies hypertension and vascular diseases. In light of the present information, this review focuses on the mechanism of hyperhomocysteinemia-associated hypertension and highlights the novel modulatory role of H2S to ameliorate hypertension.  相似文献   
42.
The COPD has been an important respiratory condition that affects people worldwide and its incidence has been alarming. The increasing incidence of this disorder has been attributed to global industrialization and environmental pollution. Although the exposures to environmental pollutants and smoking have been important triggers, the genetic component of individuals has been shown to be important for development and progression of COPD. Recent literature reported that protease-antiprotease imbalance to be important in etiopathogenesis of COPD. The enzymes namely neutrophil elastase and matrix metalloprotienases are considered to be foremost proteolytic molecules released by neutrophils and macrophages during inflammatory events in COPD. Normally, the lungs remain protected from the destructive effect of these two antiproteases by α1-antitrypsin (α1AT) and tissue inhibitors of metalloproteinases (TIMPs) respectively. In this review, we are trying to highlight the work by various research groups in exploring the SNPs of various genes of inflammatory pathways and the protease-antiprotease pathway, which may have some degree of association with COPD.  相似文献   
43.
TA29 and A9 are genes from Nicotiana tabacum and Arabidopsis thaliana respectively, which express in a tapetum specific manner. The upstream regulatory modules (URMs; i.e. the promoter and the 5′UTR) of these genes have been used in development of male sterile and restorer lines expressing the barnase and barstar genes for hybrid seed production. While initial studies show that these URMs drive the expression in a tapetum specific manner, there are no recordings of unintended (leaky) expression driven by these URMs at ectopic locations due to position effect in developed transgenic lines. The information on leaky expression driven by tissue specific URMs is important for their use in developing transgenic plants. The present study records the leaky activity of both these URMs in transgenic tobacco lines using β-glucuronidase as a reporter gene. Leaky activity was observed in about one-fourth of the lines developed with TA29. Most interestingly in these lines, the leaky expression of the reporter gene was observed to be restricted to the meristematic tip region of the roots and at the leaf gap from where leaf trace diverges from stem bundles. Such a restricted and unique pattern of leaky activity of a tissue specific promoter or a URM has never been reported before, including the URM of the A9 gene analyzed in the present study. This observation suggests the presence of cryptic cis-elements within the URM of TA29 gene that can possibly activate it in meristematic tissue when integrated at certain ectopic locations. The URM of the A9 gene was also observed to show leaky activity. However, there was no unique pattern as observed with that of TA29. Further, in the study we also show that while the smaller (290 bp) length of TA29 URM can be used to drive the expression of barnase gene to develop male sterile lines, it adversely affects the regeneration of transgenic tobacco lines due to leaky expression. This adverse effect is significantly reduced when the full length (1.5 kb) URM of the TA29 gene is used.  相似文献   
44.
Accumulation of oxidized extracellular matrix between endothelium and muscle is an important risk factor in the endothelium-myocytes uncoupling in congestive heart failure. Although ventricular remodeling is accompanied by increased matrix metalloproteinase (MMP)-9 activity, it is unclear whether MMP-9 plays a role in endothelial apoptosis in chronic volume overload congestive heart failure. We tested the hypothesis that, in chronic volume overload, myocardial dysfunction involves endocardial endothelial (EE) apoptosis in response to MMP-9 activation, extracellular matrix accumulation, and endothelium-myocytes uncoupling. Arteriovenous fistula (AVF) was created in control (FVB/NJ) and MMP-9 knockout (MMP-9KO; FVB.Cg-MMP9(tm1Tvu)/J) mice. Sham surgery was used as control. Mice were grouped as follows: wild type, n = 3 (sham control); MMP-9KO, n = 3 (sham); AVF, n = 3; and MMP-9KO + AVF (n = 3). Heart function was analyzed by M-mode and Doppler echocardiography, and with a pressure-tipped Millar catheter placed in the left ventricle of anesthetized mice 8 wk after AVF. Apoptosis was detected by measuring caspase-3, transferase-mediated dUTP nick-end labeling (TUNEL), and CD-31 by immunolabeling. Protease-activated receptors-1, connexin-43, and a disintegrin and MMP-12 (ADAM-12) expression were measured by Western blot analyses. MMP-2 and MMP-9 expression were measured by quantitative RT-PCR. Compared with control, AVF caused an increase in left ventricle end diastolic pressure and decrease in -dP/dt. In contrast, in the MMP-9KO + AVF group, these variables were changed toward control levels. Increased EE apoptosis (caspase-3 activation and TUNEL/CD-31 colabeling) in AVF mice was prevented in the MMP-9KO + AVF group. Protease-activated receptor-1, connexin-43, and ADAM-12 were induced in AVF. MMP-9 gene ablation ameliorated the induction. The results suggest that impaired cardiac function in volume overload is associated with EE apoptosis, cardiac remodeling, and endothelium-myocytes uncoupling in response to MMP-9 activation.  相似文献   
45.
Genetically engineered mice provide an excellent tool to study the role of a particular gene in biological systems and will be increasingly used as models to understand the signal transduction mechanisms involved in ischemic preconditioning (IP). However, the phenomenon of IP has not been well characterized in this species. We therefore attempted to examine whether IP could protect isolated mouse heart against global ischemia/reperfusion (GI/R) injury. Thirty adult mice hearts were perfused at constant pressure of 55 mmHg in Langendorff mode. Following 20 min equilibration, the hearts were randomized into three groups (n = 10/each): (1) Control Group; (2) IP2.5 Group: IP with two cycles of 2.5 min GI + 2.5 min R; (3) IP5 Group: IP with 5 min GI + 5 min R. All hearts were then subjected to 20 min of GI and 30 min R (37°C). Ventricular developed force was measured by a force transducer attached to the apex. Leakage of CK and LDH was measured in coronary efflux. Infarct size was determined by tetrazolium staining. Following sustained GI/R, infarct size was significantly reduced in IP2.5 (13.8 ± 2.3%), but not in IP5 (20.1 ± 4.0%), when compared with non-preconditioned control (23.6 ± 3.8%) hearts. CK and LDH release was also reduced in both IP2.5 and IP5 groups. No significant improvement in post-ischemic ventricular contractile function was observed in either IP groups. We conclude that IP with repetitive cycles of brief GI/R is able to reduce myocardial infarct size and intracellular enzyme leakage caused by a sustained GI/R in the isolated perfused mouse heart. This anti-necrosis cardioprotection induced by IP was not associated with the amelioration of post-ischemic ventricular dysfunction.  相似文献   
46.
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM−1s−1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.  相似文献   
47.
48.
Molecular and Cellular Biochemistry - Glycation is a process closely related to the aging and pathogenesis of diabetic complications. Reactive α-dicarbonyl compounds (e.g., methylglyoxal) are...  相似文献   
49.
Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase‐9 (MMP‐9), which degrades the matrix and leads to blood–brain barrier dysfunction. Hcy competitively binds to γ‐aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA‐A receptor in Hcy‐induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP‐9 activity via the extracellular signal‐regulated kinase (ERK) signaling pathway and by inhibition of GABA‐A receptors, thus behaving as an inhibitory neurotransmitter. Hcy‐induced reactive oxygen species production was detected using the fluorescent probe, 2′–7′‐dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate‐oxidase‐4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP‐9, measured by gelatin zymography. The GABA‐A receptor agonist, muscimol ameliorated the Hcy‐mediated MMP‐9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase‐4 (TIMP‐4). Treatment of the endothelial cell with muscimol restored the levels of TIMP‐4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy‐induced MMP‐9 via ERK signaling pathway. These results suggest that Hcy competes with GABA‐A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation. J. Cell. Physiol. 220: 257–266, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
50.

Background

Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where interaction and integration of immune response genes along with environmental factors play a role in autoimmune destruction of the insulin producing Pancreatic Beta cells.

Methodology/Principal Findings

We have studied four single nucleotide polymorphisms (FokI site in Exon 2, BsmI and ApaI sites in Intron 8 and TaqI site in exon 9) in the vitamin D receptor (VDR) gene using PCR-RFLP and HLA-DRB1 alleles using PCR and hybridization with sequence specific oligonucleotide probes and studied their interaction using LD based statistics for non-linked loci followed by sequence analysis of the vitamin D response element (VDRE) present in the promoter region of HLA-DRB1*0301. Haplotypes, constructed using SHEsis program for four single nucleotide polymorphisms in the VDR gene, were studied for their interaction with HLA-DRB1 alleles in 233 T1D patients and 191 healthy controls from North India. A significant increase of haplotypes FBAt and fBAT (p<0.02, OR = 1.44 and p<0.002, OR = 3.23 respectively) was observed in the patients. Both the haplotypes FBAt and fBAT were significantly increased in male patients with age at onset less than 18 years; however, fBAT was significantly increased in female patients irrespective of their age at onset. LD based statistics showed significant interaction between the high producer F and T alleles with HLA-DRB1*0301. F and T alleles of VDR have been shown to contribute to VDR mRNA independently. The promoter sequence analysis of HLA-DRB1*0301 showed presence of VDRE involved in higher expression of HLA-DRB1*030, which was confirmed by flow cytometry and real time PCR analysis.

Conclusions/Significance

These data suggest that the interaction between VDR and HLA alleles is mediated by VDRE present in the promoter region of HLA-DRB1*0301 allele, which may be detrimental for the manifestation of T1D in the absence of 1,25-(OH)2D3 in early childhood due to poor expression of DRB1*0301 in the thymus resulting in autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号