首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
  175篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   9篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   14篇
  2008年   14篇
  2007年   12篇
  2006年   13篇
  2005年   11篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
151.
Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.  相似文献   
152.
Increased asymmetric dimethylarginine (ADMA) levels have been implicated in the pathogenesis of a number of conditions affecting the cardiovascular system. However, the mechanism(s) by which ADMA exerts its effect has not been adequately elucidated. Thus the purpose of this study was to determine the effect of increased ADMA on nitric oxide (NO) signaling and to begin to elucidate the mechanism by which ADMA acts. Our initial data demonstrated that ADMA increased NO synthase (NOS) uncoupling in both recombinant human endothelial NO synthase (eNOS) and pulmonary arterial endothelial cells (PAEC). Furthermore, we found that this endothelial NOS (eNOS) uncoupling increased 3-nitrotyrosine levels preferentially in the mitochondria of PAEC due to a redistribution of eNOS from the plasma membrane to the mitochondria. This increase in nitration in the mitochondria was found to induce mitochondrial dysfunction as determined by increased mitochondrial-derived reactive oxygen species and decreased generation of ATP. Finally, we found that the decrease in ATP resulted in a reduction in the chaperone activity of HSP90 resulting in a decrease in its interaction with eNOS. In conclusion increased levels of ADMA causes mitochondrial dysfunction and a loss of heat shock protein-90 chaperone activity secondary to an uncoupling of eNOS. Mitochondrial dysfunction may be an understudied component of the endothelial dysfunction associated with various cardiovascular disease states.  相似文献   
153.
154.
The phenylalanine pathway flux is controlled by two types of regulators, those that are specific to the pathway, as well as by global regulators. In order to demonstrate the importance of these global regulators, we first removed the pathway-specific regulators using all possible combinations of gene knockouts and knockins. We found that genes like aroG fbr performed best individually as well as in combination with other genes, while other genes like tyrA and tyrR worked only in combination with other modifications. Knocking in the tktA gene under a tyrR promoter and knocking out pykF further increased phenylalanine production demonstrating that the supply of precursor via PEP and E4P is also a rate-limiting step. Finally, we tested the role of global regulators on this deregulated pathway and found that Fis overexpression helps in both enhancing and sustaining the flux through this pathway. This work opens up the possibility of using global regulators in synergy with pathway-specific modifications to enhance product yields.  相似文献   
155.
An efficient, high yield and one-pot synthesis of phenyl cyclopropyl methanones by reaction of different aryl alcohols with 4'-fluoro-4-chloro-butyrophenone in THF/DMF in the presence of NaH/TBAB is reported. Most of the methanones were further reduced to respective alcohols or methylenes. All the compounds were evaluated for their anti-tubercular activities against M. tuberculosis H37Rv in vitro displaying MICs ranging from 25 to 3.125 microg/mL. The most active compounds showed activity against MDR strains and two of them (14 and 16) showed marginal enhancement of MST in mice.  相似文献   
156.
Exposure of the exopolysaccharide (EPS)-synthesizing cyanobacterium Nostoc spongiaeforme to Zn2+ (20 M) transformed the biomass into white debris. However, a few blue–green pin-heads emerged after 2 weeks in the same Zn2+-containing medium and formed less mucoid microcolonies (1–2 mm) relative to the protruding colonies (2–4 mm) of the parent strain on nutrient agar. One of such survivors (designated as Zn20) that was stable through 10 successive transfers in Zn2+-lacking medium has been adopted for further characterization. The parent strain retained almost 88% of the total EPS synthesized, the rest being released into the ambient medium, while for Zn20, the EPS retained approximated to 74%. Although the Zn2+-sensitivity of the mutant was comparable with that of the parent (LD50, 7 M), Zn2+ uptake was still 5-fold higher in the former (2 g mg–1 biomass dry wt., 20 M, external concentration). Also, both the strains showed insignificant difference in Zn2+-sorption onto their isolated EPS. The mutant was characterized by having higher cell carbohydrate content (642.8 g mg–1 dry wt.) than its parent (513.6 g). The X-ray diffraction pattern revealed Zn2+ deposition on EPS from the parent mainly as zinc hypophosphite monohydrate [Zn(H2PO2)2·H2O], whereas there was a lack of distinct peaks in similar samples from Zn20, thus confirming the amorphous nature. There was participation in Zn2+ binding of only COO, N=O, NO2, SO2 groups in the parent while participation of P—O and C=O groups in mutant EPS was evident in IR spectra. The observations suggest that the mutant could be deployed to achieve sustained EPS synthesis, its release and metal sorption/desorption in repeated cycles.  相似文献   
157.
Accumulation of interstitial collagen (fibrosis) between the endothelium and myocytes is one of the hallmarks of cardiac failure in renovascular hypertension (RVH). Renal insufficiency increases plasma homocysteine (Hcy), and levels of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) are inversely related to plasma Hcy levels. We hypothesize that in RVH, accumulation of collagen between the endothelium and myocytes leads to endothelial-myocyte disconnection and uncoupling, in part, by hyperhomocysteinemia. Furthermore, we hypothesize that Hcy increases reactive oxygen species, generates nitrotyrosine, activates latent matrix metalloproteinase, and decreases the levels of endothelial nitric oxide in response to antagonizing PPAR-gamma. To create RVH in mice, the left renal artery was clipped with 0.4-mm silver wire for the 2 kidney, 1 clip (2K1C) method. Sham surgery was used as a control. To induce PPAR-gamma, 8 microg/mL ciglitazone (CZ) was administered to drinking water 2 days before surgery and continued for 4 weeks. Mice were grouped as 2K1C, sham, 2K1C+CZ, or sham+CZ (n = 6 in each group). Plasma Hcy increased 2-fold in the 2K1C-treated group (p < 0.05) as compared with the sham, and CZ had no effect on Hcy levels as compared to the 2K1C-treated group. Hcy binding in cardiac tissue homogenates decreased in the 2K1C-treated group but was substantially higher in the CZ-treated group. Cardiac reactive oxygen species levels were increased and endothelial nitric oxide were decreased in the 2K1C-treated group. Matrix metalloproteinase-2 and -9 activities were increased in the 2K1C-treated group compared with the control. Levels of cardiac inhibitor of metalloproteinase were decreased, whereas there was no change in tissue inhibitor of metalloproteinase-1 expression in the 2K1C-treated group vs. the sham-treated group. Collagen and nitrotyrosine levels were increased in the 2K1C-treated group, but mice treated with CZ showed lower levels comparatively. Cardiac transferase deoxyuridine nick-end labeling-positive cells were increased, and muscle cells were impaired in the 2K1C-treated mice vs. the sham-control mice. This was associated with decreased acetylcholine and bradykinin responses, which suggests endothelial-myocyte uncoupling in 2K1C-treated mice. Our results suggest that fibrosis between the endothelium and myocytes leads to an endothelial-myocyte disconnection and uncoupling by Hcy accumulation secondary to increased reactive oxygen species, nitrotyrosine, matrix metalloproteinase, and decreased endothelial nitric oxide in response to antagonizing PPAR-gamma.  相似文献   
158.
159.
Background : Alpha-7-nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel is one of the important parts of the cholinergic pathway in the brain and has a remarkable role in Alzheimer's disease (AD). It has been documented that the modulation of α7nAChR with the help of phytoconstituent can be helpful in the treatment of AD. Method : The binding efficacy of fifty flavonoids was evaluated for human α7nAChR using molecular docking. The best two flavonoids shortlisted from docking analysis were then subjected to molecular dynamic simulations for 100 ns to analyze conformational binding stability with the target protein. Further, the druggability of the selected flavonoids was checked using in silico ADMET studies. Result : The top two flavonoids selected based on binding affinity toward the binding site of α7nAChR from molecular docking were amentoflavone (–9.1 kcal/mol) and gallocatechin (–8.8 kcal/mol). The molecular dynamics simulation revealed that amentoflavone and gallocatechin have a stable state during overall simulation time, lesser root mean deviation (RMSD) and root mean square fluctuation (RMSF), and complex of both compounds with protein is stable until 100 ns. Conclusion : The two flavonoids amentoflavone and gallocatechin are potential lead molecules that could be utilized as effective agonists of α7nAChR to combat Alzheimer's disease. Future in vitro and in vivo analyses are required to confirm their effectiveness.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号