首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   13篇
  169篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   17篇
  2011年   16篇
  2010年   10篇
  2009年   14篇
  2008年   14篇
  2007年   12篇
  2006年   13篇
  2005年   11篇
  2004年   8篇
  2003年   5篇
  2002年   1篇
  1999年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
Immunological homeostasis is often maintained by counteractive functions of two different cell types or two different receptors signaling through different intermediates in the same cell. One of these signaling intermediates is protein kinase C (PKC). Ten differentially regulated PKC isoforms are integral to receptor-triggered responses in different cells. So far, eight PKC isoforms are reported to be expressed in macrophages. Whether a single receptor differentially uses PKC isoforms to regulate counteractive effector functions has never been addressed. As CD40 is the only receptor characterized to trigger counteractive functions, we examined the relative role of PKC isoforms in the CD40-induced macrophage functions. We report that in BALB/c mouse macrophages, higher doses of CD40 stimulation induce optimum phosphorylation and translocation of PKCα, βI, βII, and ε whereas lower doses of CD40 stimulation activates PKCδ, ζ, and λ. Infection of macrophages with the protozoan parasite Leishmania major impairs PKCα, βI, βII, and ε isoforms but enhances PKCδ, ζ, and λ isoforms, suggesting a reciprocity among these PKC isoforms. Indeed, PKCα, βI, βII, and ε isoforms mediate CD40-induced p38MAPK phosphorylation, IL-12 expression, and Leishmania killing; PKCδ and ζ/λ mediate ERK1/2 phosphorylation, IL-10 production, and parasite growth. Treatment of the susceptible BALB/c mice with the lentivirally expressed PKCδ- or ζ-specific short hairpin RNA significantly reduces the infection and reinstates host-protective IFN-γ-dominated T cell response, defining the differential roles for PKC isoforms in immune homeostasis and novel PKC-targeted immunotherapeutic and parasite-derived immune evasion strategies.  相似文献   
85.
Although right ventricular failure (RVF) is the hallmark of pulmonary arterial hypertension (PAH), the mechanism of RVF is unclear. Development of PAH-induced RVF is associated with an increased reactive oxygen species (ROS) production. Increases in oxidative stress lead to generation of nitro-tyrosine residues in tissue inhibitor of metalloproteinase (TIMPs) and liberate active matrix metalloproteinase (MMPs). To test the hypothesis that an imbalance in MMP-to-TIMP ratio leads to interstitial fibrosis and RVF and whether the treatment with folic acid (FA) alleviates ROS generation, maintains MMP/TIMP balance, and regresses interstitial fibrosis, we used a mouse model of pulmonary artery constriction (PAC). After surgery mice were given FA in their drinking water (0.03 g/l) for 4 wk. Production of ROS in the right ventricle (RV) was measured using oxidative fluorescent dye. The level of MMP-2, -9, and -13 and TIMP-4, autophagy marker (p62), mitophagy marker (LC3A/B), collagen interstitial fibrosis, and ROS in the RV wall was measured. RV function was measured by Millar catheter. Treatment with FA decreased the pressure to 35 mmHg from 50 mmHg in PAC mice. Similarly, RV volume in PAC mice was increased compared with the Sham group. A robust increase of ROS was observed in RV of PAC mice, which was decreased by treatment with FA. The protein level of MMP-2, -9, and -13 was increased in RV of PAC mice in comparison with that in the sham-operated mice, whereas supplementation with FA abolished this effect and mitigated MMPs levels. The protein level of TIMP-4 was decreased in RV of PAC mice compared with the Sham group. Treatment with FA helped PAC mice to improve the level of TIMP-4. To further support the claim of mitophagy occurrence during RVF, the levels of LC3A/B and p62 were measured by Western blot and immunohistochemistry. LC3A/B was increased in RV of PAC mice. Similarly, increased p62 protein level was observed in RV of PAC mice. Treatment with FA abolished this effect in PAC mice. These results suggest that FA treatment improves MMP/TIMP balance and ameliorates mitochondrial dysfunction that results in protection of RV failure during pulmonary hypertension.  相似文献   
86.
A high energy density supercapacitor device is reported that utilizes hybrid carbon electrodes and the ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4) as an electrolyte. The hybrid electrodes are prepared from reduced graphite oxide (rGO) and purified single‐walled carbon nanotubes (SWCNTs). A simple casting technique gives the hybrid structure with optimum porosity and functionality that provides high energy and power densities. The combination of SWCNTs and rGO in a weight ratio of 1:1 is found to afford a specific capacitance of 222 F g?1 and an energy density of 94 Wh kg?1 at room temperature.  相似文献   
87.
Increased levels of homocysteine (Hcy), recognized as hyperhomocysteinemia (HHcy), were associated with cardiovascular diseases. There was controversy regarding the detrimental versus cardio protective role of inducible nitric oxide synthase (iNOS) in ischemic heart disease. The aim of this study was to test the hypothesis that the Hcy generated nitrotyrosine by inducing the endothelial nitric oxide synthase, causing endothelial‐myocyte (E‐M) coupling. To differentiate the role of iNOS versus constitutive nitric oxide synthase (eNOS and nNOS) in Hcy‐mediated nitrotyrosine generation and matrix remodeling in cardiac dysfunction, left ventricular (LV) tissue was analyzed from cystathionine beta synthase (CBS) heterozygote knockout, iNOS homozygote knockout, CBS?/+/iNOS?/? double knockout, and wild‐type (WT) mice. The levels of nitrotyrosine, MMP‐2 and ‐9 (zymographic analysis), and fibrosis (by trichrome stain) were measured. The endothelial‐myocyte function was determined in cardiac rings. In CBS?/+ mice, homocysteine was elevated and in iNOS?/? mice, nitric oxide was significantly reduced. The nitrotyrosine and matrix metalloproteinase‐9 (MMP‐9) levels were elevated in double knockout and CBS?/+ as compared to WT mice. Although MMP‐2 levels were similar in CBS?/+, iNOS?/?, and CBS?/+/iNOS?/?, the levels were three‐ to fourfold higher than WT. The levels of collagen were similar in CBS?/+ and iNOS?/?, but they were threefold higher than WT. Interesting, the levels of collagen increased sixfold in double knockouts, compared to WT, suggesting synergism between high Hcy and lack of iNOS. Left ventricular hypertrophy was exaggerated in the iNOS?/? and double knockout, and mildly increased in the CBS?/+, compared to WT mice. The endothelial‐dependent relaxation was attenuated to the same extent in the CBS?/+ and iNOS?/?, compared to WT, but it was robustly blunted in double knockouts. The results concluded that homocysteine generated nitrotyrosine in the vicinity of endothelium, caused MMP activation and endothelium‐myocyte uncoupling. The generation of nitrotyrosine was independent of iNOS. J. Cell. Biochem. 106: 119–126, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
88.
Plasmonics - Graphene, having extraordinary electronic and optical properties at THz frequencies, can be used in the design and development of miniaturized components, devices, and integrated...  相似文献   
89.
90.
An elevated level of Homocysteine (Hcy) is a risk factor for vascular dementia and stroke. Cysthathionine β Synthase (CBS) gene is involved in the clearance of Hcy. Homozygous individuals for (CBS−/−) die early, but heterozygous for (CBS−/+) survive with high levels of Hcy. The γ-Amino Butyric Acid (GABA) presents in the central nervous system (CNS) and functions as an inhibitory neurotransmitter. Hcy competes with GABA at the GABAA receptor and affects the CNS function. We hypothesize that Hcy causes a decrease in blood flow to the brain due to increase in vascular resistance (VR) because of arterial remodeling in the carotid artery (CA). Blood pressure and blood flow in CA of wild type (WT), CBS−/+, CBS−/+ GABAA−/− double knockout, and GABAA−/− were measured. CA was stained with trichrome, and the brain permeability was measured. Matrix Metalloproteinases (MMP-2 and MMP-9), tissue inhibitor of metalloproteinase (TIMP-3, TIMP-4), elastin, and collagen-III expression were measured by real-time polymerase chain reaction (RT-PCR). Results showed an increase in VR in CBS−/+/GABAA−/−double knockout > CBS−/+/ > GABAA−/− compared to WT mice. Increased MMP-2, MMP-9, collagen-III and TIMP-3 mRNA levels were found in GABAA−/−, CBS−/+, CBS−/+/GABAA double knockout compared to WT. The levels of TIMP-4 and elastin were decreased, whereas the levels of MMP-2, MMP-9 and TIMP-3 increased, which indirectly reflected the arterial resistance. These results suggested that Hcy caused arterial remodeling in part, by increase in collagen/elastin ratio thereby increasing VR leading to the decrease in CA blood flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号