首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   848篇
  免费   38篇
  国内免费   2篇
  888篇
  2023年   11篇
  2022年   18篇
  2021年   42篇
  2020年   21篇
  2019年   15篇
  2018年   37篇
  2017年   25篇
  2016年   21篇
  2015年   25篇
  2014年   44篇
  2013年   56篇
  2012年   68篇
  2011年   46篇
  2010年   42篇
  2009年   46篇
  2008年   35篇
  2007年   30篇
  2006年   31篇
  2005年   29篇
  2004年   26篇
  2003年   19篇
  2002年   10篇
  2001年   15篇
  2000年   7篇
  1999年   13篇
  1998年   9篇
  1997年   5篇
  1996年   4篇
  1993年   3篇
  1992年   8篇
  1991年   9篇
  1990年   9篇
  1989年   12篇
  1988年   12篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1975年   7篇
  1974年   5篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1966年   3篇
排序方式: 共有888条查询结果,搜索用时 15 毫秒
31.
An efficient and simple procedure for inducing high frequency direct shoot organogenesis and somatic embryogenesis in lentil from cotyledonary node explants (without both the cotyledons) in response to TDZ alone is reported. TDZ at concentration lower than 2.0 μM induced shoot organogenesis whereas at higher concentration (2.5–15 μM) it caused a shift in regeneration from shoot organogenesis to somatic embryogenesis. The cotyledonary node and seedling cultures developed only shoots even at high concentrations of BAP and TDZ, respectively. TDZ at 0.5 and 5.0 μM was found to be optimal for inducing an average of 4–5 shoots per cotyledonary node in 93 % of the cultures and 55 somatic embryos in 68 % of the cultures, respectively. The somatic embryos were germinated when transferred to lower TDZ concentration (0.5–1.0 μM). The shoots were rooted on MS basal medium containing 2.5 μM IBA. The plantlets were obtained within 8 weeks from initiation of culture and were morphologically similar to seed-raised plants. The possible role of stress in thidiazuron induced somatic embryogenesis is discussed.Key words: Thidiazuron, Lens culinaris, Somatic embryogenesis, Organogenesis  相似文献   
32.
Elevated plasma homocysteine (Hcy) is associated with cerebrovascular disease and activates matrix metalloproteinases (MMPs), which lead to vascular remodeling that could disrupt the blood-brain barrier. To determine whether Hcy administration can increase brain microvascular leakage secondary to activation of MMPs, we examined pial venules by intravital video microscopy through a craniotomy in anesthetized mice. Bovine serum albumin labeled with fluorescein isothiocyanate (BSA-FITC) was injected into a carotid artery to measure extravenular leakage. Hcy (30 microM/total blood volume) was injected 10 min after FITC-BSA injection. Four groups of mice were examined: 1) wild type (WT) given vehicle; 2) WT given Hcy (WT + Hcy); 3) MMP-9 gene knockout given Hcy (MMP-9-/- + Hcy); and 4) MMP-9-/- with topical application of histamine (10(-4) M) (MMP-9-/- + histamine). In the WT + Hcy mice, leakage of FITC-BSA from pial venules was significantly (P < 0.05) greater than in the other groups. There was no significant leakage of pial microvessels in MMP-9-/- + Hcy mice. Increased cerebrovascular leakage in the MMP-9-/- + histamine group showed that microvascular permeability could still increase by a mechanism independent of MMP-9. Treatment of cultured mouse microvascular endothelial cells with 30 microM Hcy resulted in significantly greater F-actin formation than in control cells without Hcy. Treatment with a broad-range MMP inhibitor (GM-6001; 1 microM) ameliorated Hcy-induced F-actin formation. These data suggest that Hcy increases microvascular permeability, in part, through MMP-9 activation.  相似文献   
33.
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643 U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~ 50 kDa while the optimum pH and temperature were found to be 7.0 and 35 °C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29 ± 1.40 kcal/mol. The Km and Vmax were determined to be 0.27 ± 0.045 mM; 30.30 ± 1.30 U/ml with NADPH and 0.59 ± 0.060 mM; 4.16 ± 0.095 U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1 μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71 mM), NEM (IC50 0.50 mM) and DEPC (IC50 0.27 mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.  相似文献   
34.
An enhanced intracellular level of Nitric oxide (NO) is essential to ameliorate several pathological conditions of heart and vasculature necessitating the activation of NOS. We have projected in this report the acetylation of eNOS by polyphenolic peracetates (PA) catalyzed by the novel enzyme acetoxy drug: protein transacetylase (TAase) discovered in our laboratory as an unambiguous way of activating NOS which results in the manifestation of physiological action. The human platelet was chosen as the experimental system in order to validate the aforementioned proposition. PA caused profound irreversible activation of platelet NADPH cytochrome c reductase mediated by TAase. The convincing biochemical evidences are presented to show that PA could cause acetylation of the reductase domain of NOS leading to the activation of eNOS in tune with their specificities to platelet TAase. As a result, the enhanced level of NO due to activation of platelet eNOS by PA was found to inhibit the ADP-induced platelet aggregation. The present studies highlight for the first time the role of PA as the novel potent agent for enhancing the intracellular NO levels.  相似文献   
35.
36.
37.
The enzymatic synthesis of polyesters from activated diesters and diols has been investigated. Differences between enzymatic synthesis and traditional chemical condensation processes are discussed. The disappearance of monomers during the initial phase of reaction indicates that enzyme has a higher specificity for transesterification of ester-terminated oligomers. During the intermediate phase, enzymatic polymerization involves a competition between diol and enzyme-bound water for the nucleophilic attack of the acyl enzyme intermediate. Competition between enzymatic transesterification and hydrolysis at different stages of polymerization in nonaqueous media is responsible for termination of polyesters with acid end-groups and also for limiting the polymer molecular weight. The resulting oligoester consists of chains that are either terminated with - OH groups and/or - COOH groups. We have used Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass spectroscopy (MALDI-TOF) along with colorimetric titration techniques to determine the acidity of enzyme-synthesized polyesters. This paper addresses how the enzymatic polymerization proceeds, and compares our results to the growing literature in this field. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 227-239, 1997.  相似文献   
38.
Peatlands are important carbon reserves in terrestrial ecosystems. The microtopography of a peatland area has a strong influence on its carbon balance, determining carbon fluxes at a range of spatial scales. These patterned surfaces are very sensitive to changing climatic conditions. There are open research questions concerning the stability, behaviour and transformation of these microstructures, and the implications of these changes for the long-term accumulation of organic matter in peatlands. A simple two-dimensional peat microtopographical model was developed, which accounts for the effects of microtopographical variations and a dynamic water table on competitive interactions between peat-forming plants. In a case study of a subarctic mire in northern Sweden, we examined the consequences of such interactions on peat accumulation patterns and the transformation of microtopographical structure. The simulations demonstrate plausible interactions between peatland growth, water table position and microtopography, consistent with many observational studies, including an observed peat age profile from the study area. Our model also suggests that peatlands could exhibit alternative compositional and structural dynamics depending on the initial topographical and climatic conditions, and plant characteristics. Our model approach represents a step towards improved representation of peatland vegetation dynamics and net carbon balance in Earth system models, allowing their potentially important implications for regional and global carbon balances and biogeochemical and biophysical feedbacks to the atmosphere to be explored and quantified.  相似文献   
39.
Microbial cells have extensively been utilized to produce value-added bioactive compounds. Based on advancement in protein engineering, DNA recombinant technology, genome engineering, and metabolic remodeling, the microbes can be re-engineered to produce industrially and medicinally important platform chemicals. The emergence of co-culture system which reduces the metabolic burden and allows parallel optimization of the engineered pathway in a modular fashion restricting the formation of undesired byproducts has become an alternative way to synthesize and produce bioactive compounds. In this study, we present genetically engineered E. coli-based co-culture system to the de novo synthesis of apigetrin (APG), an apigenin-7-O-β-d-glucopyranoside of apigenin. The culture system consists of an upstream module including 4-coumarate: CoA ligase (4CL), chalcone synthase, chalcone flavanone isomerase (CHS, CHI), and flavone synthase I (FNSI) to synthesize apigenin (API) from p-coumaric acid (PCA). Whereas, the downstream system contains a metabolizing module to enhance the production of UDP-glucose and expression of glycosyltransferase (PaGT3) to convert API into APG. To accomplish this improvement in titer, the initial inoculum ratio of strains for making the co-culture system, temperature, and media component was optimized. Following large-scale production, a yield of 38.5 µM (16.6 mg/L) of APG was achieved. In overall, this study provided an efficient tool to synthesize bioactive compounds in microbial cells.  相似文献   
40.
The present study determined the plant biomass (aboveground and belowground) of Salicornia brachiata from six different salt marshes distributed in Indian coastal area over one growing season (September 2014–May 2015). The nutrients concentration and their pools were estimated in plant as well as soil. Belowground biomass in S. brachiata was usually lower than the aboveground biomass. Averaged over different locations, highest biomass was observed in the month of March (2.1 t ha?1) followed by May (1.64 t ha?1), February (1.60 t ha?1), November (0.82 t ha?1) and September (0.05 t ha?1). The averaged aboveground to belowground ratio was 12.0. Aboveground and belowground biomass were negatively correlated with pH of soil, while positively with soil electrical conductivity. Further, there were positive relationships between organic carbon and belowground biomass; and available sodium and aboveground biomass. The nutrient pools in aboveground were always higher than to belowground biomass. Aboveground pools of carbon (543 kg ha?1), nitrogen (48 kg ha?1), phosphorus (4 kg ha?1), sodium (334 kg ha?1) and potassium (37 kg ha?1) were maximum in the month of March 2015. Bioaccumulation and translocation factors for sodium of S. brachiata were more than one showing tolerance to salinity and capability of phytoremediation for the saline soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号