首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   33篇
  438篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   15篇
  2013年   18篇
  2012年   26篇
  2011年   24篇
  2010年   16篇
  2009年   15篇
  2008年   17篇
  2007年   21篇
  2006年   21篇
  2005年   11篇
  2004年   20篇
  2003年   15篇
  2002年   13篇
  2001年   12篇
  2000年   11篇
  1999年   11篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   6篇
  1975年   4篇
  1974年   10篇
  1972年   6篇
  1971年   4篇
  1968年   2篇
  1967年   2篇
  1966年   6篇
  1960年   2篇
排序方式: 共有438条查询结果,搜索用时 0 毫秒
31.
The septal association of Mycobacterium tuberculosis MtrB, the kinase partner of the MtrAB two-component signal transduction system, is necessary for the optimal expression of the MtrA regulon targets, including ripA, fbpB, and ftsI, which are involved in cell division and cell wall synthesis. Here, we show that MtrB, irrespective of its phosphorylation status, interacts with Wag31, whereas only phosphorylation-competent MtrB interacts with FtsI. We provide evidence that FtsI depletion compromises the MtrB septal assembly and MtrA regulon expression; likewise, the absence of MtrB compromises FtsI localization and, possibly, FtsI activity. We conclude from these results that FtsI and MtrB are codependent for their activities and that FtsI functions as a positive modulator of MtrB activation and MtrA regulon expression. In contrast to FtsI, Wag31 depletion does not affect MtrB septal assembly and MtrA regulon expression, whereas the loss of MtrB increased Wag31 localization and the levels of PknA/PknB (PknA/B) serine-threonine protein kinase-mediated Wag31 phosphorylation. Interestingly, we found that FtsI decreased levels of phosphorylated Wag31 (Wag31∼P) and that MtrB interacted with PknA/B. Overall, our results indicate that MtrB interactions with FtsI, Wag31, and PknA/B are required for its optimal localization, MtrA regulon expression, and phosphorylation of Wag31. Our results emphasize a new role for MtrB in cell division and cell wall synthesis distinct from that regulating the MtrA phosphorylation activities.  相似文献   
32.
33.
Background and AimPredicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms.Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance.MethodsHigh-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway.ResultsHigh-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score −11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of −11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells.ConclusionCB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.  相似文献   
34.
Intein is a protein sequence mebedded in-frame within a precursor protein and is posttranslationally excised by a self-catalytic protein splicing process. Protein splicing is believed to follow a pathway requiring Cys, Ser, or Thr residues at the intein N-terminus and substitutions other than Cys, Ser, or Thr residues prevent splicing. We show that the dnaB locus in some strains of M. avium-intracellulare complex (MAC) contains intein and that the intein N-terminal amino acid is Ala [Ala-type]. We demonstrate that the M. avium DnaB precursor protein undergoes posttranslational proteolytic processing producing proteins corresponding to the sizes of the DnaB and intein. Further, by Western analysis we detect a protein corresponding to the size of the spliced DnaB protein in MAC cell extracts. Together, these results indicate that the Ala-type MAC DnaB inteins can splice and provide another example that points to an interesting alternative splicing mechanism (Southworth, M. W., Benner, J., and Perler, F. B., EMBO J. 19, 5019-5026, 2000).  相似文献   
35.
We have investigated the mechanism of activation of an inactive but functionally intact hamster thymidine kinase (TK) gene by the chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine. Following carcinogen treatment of TK- RJK92 Chinese hamster cells, aminopterin-resistant (HATr) colonies appeared at a frequency 50-fold higher than in untreated controls. More than 80% of these HATr variants expressed TK enzymatic activity and were divided into high- and low-activity classes. In all TK+ variants, TK expression was correlated with demethylation in the 5' region of the TK gene and the appearance a 1,400-nucleotide TK mRNA. Using high-performance liquid chromatography to measure the level of genomic methylation, we found that four of five high-activity lines demonstrated extensive genomic hypomethylation (approximately 25% of normal level) that was associated with demethylation of all TK gene copies. Restriction endonuclease analysis of 15 low-activity lines revealed four instances of sequence alterations in the far-5' region of the TK gene and one instance of a tandem low-copy amplification. In these lines, the structurally altered gene copy was demethylated. Thus, we propose that a chemical carcinogen can activate TK expression by several different mechanisms. Focal demethylation with or without gene rearrangement was associated with low TK activity, whereas demethylation throughout the genome was associated with high TK activity.  相似文献   
36.
Macrophage metalloelastase or matrix metalloproteinase-12 (MMP-12) appears to exacerbate atherosclerosis, emphysema, aortic aneurysm, rheumatoid arthritis, and inflammatory bowel disease. An inactivating E219A mutation, validated by crystallography and NMR spectra, prevents autolysis of MMP-12 and allows us to determine its NMR structure without an inhibitor. The structural ensemble of the catalytic domain without an inhibitor is based on 2813 nuclear Overhauser effects (NOEs) and has an average RMSD to the mean structure of 0.25 Å for the backbone and 0.61 Å for all heavy atoms for residues Trp109-Gly263. Compared to crystal structures of MMP-12, helix B (hB) at the active site is unexpectedly more deeply recessed under the β-sheet. This opens a pocket between hB and β-strand IV in the active-site cleft. Both hB and an internal cavity are shifted toward β-strand I, β-strand III, and helix A on the back side of the protease. About 25 internal NOE contacts distinguish the inhibitor-free solution structure and indicate hB's greater depth and proximity to the sheet and helix A. Line broadening and multiplicity of amide proton NMR peaks from hB are consistent with hB undergoing a slow conformational exchange among subtly different environments. Inhibitor-binding-induced perturbations of the NMR spectra of MMP-1 and MMP-3 map to similar locations across MMP-12 and encompass the internal conformational adjustments. Evolutionary trace analysis suggests a functionally important network of residues that encompasses most of the locations adjusting in conformation, including 18 residues with NOE contacts unique to inhibitor-free MMP-12. The conformational change, sequence analysis, and inhibitor perturbations of NMR spectra agree on the network they identify between structural scaffold and the active site of MMPs.  相似文献   
37.
BACKGROUND: The inherent ability of certain peptides or proteins of viral, prokaryotic and eukaryotic origin to bind DNA was used to generate novel peptide-based DNA delivery protocols. We have developed a recombinant approach to make fusion proteins with motifs for DNA-binding ability, Mu and membrane transduction domains, TAT, and tested them for their DNA-binding, uptake and transfection efficiencies. In one of the constructs, the recombinant plasmid was designed to encode the Mu moiety of sequence MRRAHHRRRRASHRRMRGG in-frame with TAT of sequence YGRKKRRQRRR to generate TAT-Mu, while the other two constructs, Mu and Mu-Mu, harbor a single copy or two copies of the Mu moiety. METHODS: Recombinant his-tag fusion proteins TAT-Mu, Mu and Mu-Mu were purified by overexpression of plasmid constructs using cobalt-based affinity resins. The peptides were characterized for their size and interaction with DNA, complexed with plasmid pCMVbeta-gal, and shown to transfect MCF-7, COS and CHOK-1 cells efficiently. RESULTS: Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu were cloned and overexpressed in BL21(DE3)pLysS with greater than 95% purity. The molecular weight of TAT-Mu was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to be 11.34 kDa while those of Mu and Mu-Mu were 7.78 and 9.83 kDa, respectively. Live uptake analysis of TAT-Mu, Mu and Mu-Mu as DP (DNA+peptide) or DPL (DNA+peptide+lipid) complexes into MCF-7 cells, followed by immunostaining and laser scanning confocal microscopy, demonstrated that the complexes are internalized very efficiently and localized in the nucleus. DNA:peptide complexes (DP) transfect MCF-7, COS and CHOK-1 cells. The addition of cationic liposomes enhances the uptake of the ternary complexes (DPL) further and also brings about 3-7-fold enhancement in reporter gene expression compared to DP alone. CONCLUSIONS: Recombinant proteins that are heterologous fusions, having DNA-binding domains and nuclear localization epitopes, generated in this study have considerable potential to facilitate DNA delivery and enhance transfection. The domains in these fusion proteins would be promising in the development of non-viral gene delivery vectors particularly in cells that do not divide.  相似文献   
38.
39.
40.
In Escherichia coli, translocation of exported proteins across the cytoplasmic membrane is dependent on the motor protein SecA and typically begins only after synthesis of the substrate has already been completed (i.e., posttranslationally). Thus, it has generally been assumed that the translocation machinery also recognizes its protein substrates posttranslationally. Here we report a specific interaction between SecA and the ribosome at a site near the polypeptide exit channel. This interaction is mediated by conserved motifs in SecA and ribosomal protein L23, and partial disruption of this interaction in?vivo by introducing mutations into the genes encoding SecA or L23 affects the efficiency of translocation by the posttranslational pathway. Based on these findings, we propose that SecA could interact with its nascent substrates during translation in order to efficiently channel them into the "posttranslational" translocation pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号