首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   767篇
  免费   65篇
  832篇
  2023年   5篇
  2022年   20篇
  2021年   34篇
  2020年   16篇
  2019年   18篇
  2018年   17篇
  2017年   24篇
  2016年   21篇
  2015年   29篇
  2014年   50篇
  2013年   62篇
  2012年   64篇
  2011年   56篇
  2010年   33篇
  2009年   38篇
  2008年   47篇
  2007年   37篇
  2006年   42篇
  2005年   48篇
  2004年   42篇
  2003年   28篇
  2002年   24篇
  2001年   11篇
  2000年   14篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有832条查询结果,搜索用时 15 毫秒
141.
The increasing interest in vanadium coordination chemistry is based on its well-established chemical and biological functions. A beta-diketonato complex of oxovanadium(IV) is known to be having numerous catalytic applications and also exhibits promising insulin mimetic properties. In continuation of our structure activity relationship studies of metal complexes, we report herein the synthesis and characterization of the vanadium complexes of beta-diketonato ligand system with systematic variations of electronic and steric factors. Two complexes, VO(tmh)(2) (tmh = 2,2,6,6,-tetramethyl-3,5-heptanedione), and VO(hd)(2) (hd = 3,5-heptanedione) were synthesized and characterized by using different spectroscopic techniques. Elemental and mass spectral analysis supports the presence of two beta-diketonato ligands per VO(2+) unit. UV-Vis spectra in different solvents indicate coordination of coordinating solvent molecules at sixth position resulting in red shift of the band I transition. NMR and IR spectra reveal binding of coordinating solvent molecule at vacant sixth position trans to oxo group without releasing beta-diketonato ligands. Enzyme inhibition studies of these and other related oxovanadium(IV) complexes with beta-diketonato ligand system are conducted with snake venom phosphodiesterase I (SPVDE). All of these complexes showed significant inhibitory potential and were found to be non-competitive inhibitors against this enzyme.  相似文献   
142.
143.
Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics.  相似文献   
144.
145.
Probabilistic Boolean Networks, which form a subclass of Markovian Genetic Regulatory Networks, have been recently introduced as a rule-based paradigm for modeling gene regulatory networks. In an earlier paper, we introduced external control into Markovian Genetic Regulatory networks. More precisely, given a Markovian genetic regulatory network whose state transition probabilities depend on an external (control) variable, a Dynamic Programming-based procedure was developed by which one could choose the sequence of control actions that minimized a given performance index over a finite number of steps. The control algorithm of that paper, however, could be implemented only when one had perfect knowledge of the states of the Markov Chain. This paper presents a control strategy that can be implemented in the imperfect information case, and makes use of the available measurements which are assumed to be probabilistically related to the states of the underlying Markov Chain.  相似文献   
146.
Trichomaglin is a protein isolated from root tuber of the plant Maganlin (Trichosanthes Lepiniate, Cucurbitaceae). The crystal structure of trichomaglin has been determined by multiple-isomorphous replacement and refined at 2.2 A resolution. The X-ray sequence was established, based on electron density combined with the experimentally determined N-terminal sequence, and the sequence information derived from mass spectroscopic analysis. X-ray sequence-based homolog search and the three-dimensional structure reveal that trichomaglin is a novel S-like RNase, which was confirmed by biological assay. Trichomaglin molecule contains an additional beta sheet in the HV(b) region, compared with the known plant RNase structures. Fourteen cystein residues form seven disulfide bridges, more than those in the other known structures of S- and S-like RNases. His43 and His105 are expected to be the catalytic acid and base, respectively. Four hydrosulfate ions are bound in the active site pocket, three of them mimicking the substrate binding sites.  相似文献   
147.

Adverse environmental conditions greatly influence crop production every year and threaten food security. Plants have a range of signaling networks to combat these stresses, in which several stress-responsive genes and regulatory proteins function together. One such important family of proteins, the Stress Associated Protein (SAP) family, has been identified as a novel regulator of multiple stresses. The SAPs possess a characteristic N-terminal A20 zinc-finger domain combined with either AN1 or C2H2 at the C-terminus. SAPs provide tolerance against various abiotic stresses, including cold, salt, drought, heavy metal, and wounding. The majority of SAPs are stress-inducible and have a function in conferring stress tolerance in transgenics. The role of SAPs in regulating biotic stress responses is a newly emerging field among researchers. SAPs interact with many other proteins to execute their functions; however, the detailed mechanism of these interactions needs to be elucidated. In this context, the present review provides a detailed view of the evolution and functions of SAPs in plants. The involvement in crosstalk between abiotic and biotic stress signaling pathways makes SAPs ideal targets to develop crops with tolerance against multiple stresses without any yield penalty. Altogether, we provide current knowledge on SAPs for investigating their role in stress response, which can further be exploited to develop climate-resilient crops through transgene-based, breeding-mediated, or genome-editing approaches.

  相似文献   
148.
149.
Proteomics characterization of abundant Golgi membrane proteins   总被引:15,自引:0,他引:15  
A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.  相似文献   
150.
The phytochemical investigation of the ethyl acetate extract of Hypericum thasium has led to the characterization of four benzophenone derivatives 1-4, a known benzophenone 5 and four known flavonoids, quercetin (6), quercitrin (7), isoquercetin (8), and 3, 8′′-biapigenin (9). Lucigenin- and luminal-based chemiluminescence assays were employed to monitor the inhibitory activity of these compounds towards the production of reactive oxygen species (ROS) by human polymorphoneutrophils (PMNs). The assay results showed that benzophenones 1 and 3 are extracellular inhibitors of ROS production, while flavonoids 6, 8, and 9 can modulate intracellular ROS production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号