首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2770篇
  免费   147篇
  国内免费   3篇
  2023年   22篇
  2022年   41篇
  2021年   83篇
  2020年   51篇
  2019年   55篇
  2018年   75篇
  2017年   71篇
  2016年   85篇
  2015年   143篇
  2014年   126篇
  2013年   209篇
  2012年   205篇
  2011年   199篇
  2010年   141篇
  2009年   104篇
  2008年   133篇
  2007年   140篇
  2006年   126篇
  2005年   115篇
  2004年   86篇
  2003年   81篇
  2002年   75篇
  2001年   37篇
  2000年   27篇
  1999年   30篇
  1998年   20篇
  1997年   19篇
  1995年   15篇
  1992年   14篇
  1991年   19篇
  1990年   19篇
  1989年   16篇
  1988年   16篇
  1987年   14篇
  1986年   12篇
  1985年   16篇
  1984年   21篇
  1983年   16篇
  1982年   19篇
  1981年   12篇
  1979年   14篇
  1977年   13篇
  1976年   13篇
  1975年   14篇
  1974年   12篇
  1972年   14篇
  1971年   11篇
  1968年   11篇
  1967年   11篇
  1966年   10篇
排序方式: 共有2920条查询结果,搜索用时 31 毫秒
911.
To try to improve hydrolysis yields at elevated solids loadings, a comparison was made between batch and fed-batch addition of fresh substrate at the initial and later phases of hydrolysis. Both ethanol (EPCS) and steam-pretreated corn stover (SPCS) substrates were tested at low (5 FPU) and high (60 FPU) loadings of cellulase per gram of cellulose. The fed-batch addition of fresh substrate resulted in a slight decrease in hydrolysis yields when compared with the corresponding batch reactions. A 72-h hydrolysis of the SPCS substrate resulted in a hydrolysis yield of 66% compared with 51% for the EPCS substrate. When the enzyme adsorption and substrate characteristics were assessed during batch and fed-batch hydrolysis, it appeared that the irreversible binding of cellulases to the more recalcitrant original substrate limited their access to the freshly added substrate. After 72-h hydrolysis of the SPCS substrate at low enzyme loadings, ~40-50% of the added cellulases were desorbed into solution, whereas only 20% of the added enzyme was released from the EPCS substrate. Both simultaneous and sequential treatments with xylanases and cellulases resulted in an up to a 20% increase in hydrolysis yields for both substrates at low enzyme loading. Simons' stain measurements indicated that xylanase treatment increased cellulose access, thus facilitating cellulose hydrolysis.  相似文献   
912.
913.
914.
Insulin-induced gene proteins (INSIGs) function in control of cellular cholesterol. Mammalian INSIGs exert control by directly interacting with proteins containing sterol-sensing domains (SSDs) when sterol levels are elevated. Mammalian 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR) undergoes sterol-dependent, endoplasmic-reticulum (ER)-associated degradation (ERAD) that is mediated by INSIG interaction with the HMGR SSD. The yeast HMGR isozyme Hmg2 also undergoes feedback-regulated ERAD in response to the early pathway-derived isoprene gernanylgeranyl pyrophosphate (GGPP). Hmg2 has an SSD, and its degradation is controlled by the INSIG homologue Nsg1. However, yeast Nsg1 promotes Hmg2 stabilization by inhibiting GGPP-stimulated ERAD. We have proposed that the seemingly disparate INSIG functions can be unified by viewing INSIGs as sterol-dependent chaperones of SSD clients. Accordingly, we tested the role of sterols in the Nsg1 regulation of Hmg2. We found that both Nsg1-mediated stabilization of Hmg2 and the Nsg1-Hmg2 interaction required the early sterol lanosterol. Lowering lanosterol in the cell allowed GGPP-stimulated Hmg2 ERAD. Thus, Hmg2-regulated degradation is controlled by a two-signal logic; GGPP promotes degradation, and lanosterol inhibits degradation. These data reveal that the sterol dependence of INSIG-client interaction has been preserved for over 1 billion years. We propose that the INSIGs are a class of sterol-dependent chaperones that bind to SSD clients, thus harnessing ER quality control in the homeostasis of sterols.  相似文献   
915.
The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/β-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active β-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced β-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the β-catenin pathway.  相似文献   
916.
917.
918.
DNA manipulation routinely requires competent bacteria that can be made using one of numerous methods. To determine the best methods, we compared four commonly used chemical methods (DMSO, MgCl2–CaCl2, CaCl2 and Hanahan''s methods) on frequently used Escherichia coli (E. coli) strains: DH5α, XL-1 Blue, SCS110, JM109, TOP10 and BL21-(DE3)-PLysS. Hanahan''s method was found to be most effective for DH5α, XL-1 Blue and JM109 strains (P<0.05), whilst the CaCl2 method was best for SCS110, TOP10 and BL21 strains (P<0.05). The use of SOB (super optimal broth) over LB [Luria–Bertani (broth)] growth media was found to enhance the competency of XL-1 Blue (P<0.05), dampened JM109′s competency (P<0.05), and had no effect on the other strains (P>0.05). We found no significant differences between using 45 or 90 s heat shock across all the six strains (P>0.05). Through further optimization by means of concentrating the aliquots, we were able to get further increases in transformation efficiencies. Based on the optimized parameters and methods, these common laboratory E. coli strains attained high levels of TrE (transformation efficiency), thus facilitating the production of highly efficient and cost-effective competent bacteria.  相似文献   
919.
The study was aimed to search out the probable molecule behind the activation of a broad spectrum resistance during Pseudomonas aeruginosa WS-1 mediated induced systemic resistance (ISR) in Capsicum annuum where plants were challenged inoculated with its pathogen Colletotrichum capsici 24 h after induction of ISR. On the fourth day after pathogen inoculation a significant increase of pathogenesis-related (PR) proteins, other defence enzymes and phenolics as well as a two-fold increase of nitric oxide (NO) a potent defence signalling molecule were observed. Treatment of the host with NO donor also induced the same defence molecule in a similar manner. Results suggest the possible signalling role of NO in ISR during crosstalk between ISR inducing agent and pathogen within the host system.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号