首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   25篇
  398篇
  2023年   1篇
  2022年   9篇
  2021年   13篇
  2020年   7篇
  2019年   6篇
  2018年   13篇
  2017年   14篇
  2016年   15篇
  2015年   21篇
  2014年   29篇
  2013年   40篇
  2012年   21篇
  2011年   23篇
  2010年   19篇
  2009年   15篇
  2008年   26篇
  2007年   19篇
  2006年   19篇
  2005年   13篇
  2004年   11篇
  2003年   12篇
  2002年   9篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
131.
Kaposi's sarcoma-associated herpesvirus (KSHV) (human herpesvirus 8) binds to adherent target cell surface heparan sulfate molecules via its envelope glycoproteins gB and gpK8.1A, to integrins via gB, to the transporter CD98/xCT complex, and possibly to another molecule(s). This is followed by virus entry overlapping with the induction of preexisting host cell signal pathways, such as focal adhesion kinase, Src, phosphatidylinositol 3-kinase (PI3-K), Rho-GTPases, protein kinase C-zeta, and extracellular signal-regulated kinase 1/2. Here, using hemagglutinin-tagged plasmids expressing wild-type, dominant-positive, and dominant-negative forms of RhoA in HEK (human embryonic kidney) 293 cells, we investigated the role of RhoA-GTPase in virus entry. The dominant-negative form of RhoA GTPase and treatment of target cells with Clostridium difficile toxin B (CdTxB), a specific inactivator of Rho-GTPases, significantly blocked KSHV entry. KSHV infection induced closely similar levels of FAK and PI3-K in all three cell types. In contrast, very strong Src activation was observed in KSHV-infected dominant-positive RhoA cells compared to wild-type cells, and only moderate Src activation was seen in dominant-negative cells. Inhibition of Src activation by CdTxB and reduction of RhoA activation by Src inhibitors suggest that KSHV-induced Src is involved in RhoA activation, which in turn is involved in a feedback-sustained activation of Src. Since the decreased entry in RhoA dominant-negative cells may be due to inefficient signaling downstream of RhoA, we examined the induction of RhoA-activated Dia-2, which is also known to induce Src. Dia-2 coimmunoprecipitated with activated Src, which was inhibited by Src inhibitors, in the infected cells. Together with the reduced virus entry in RhoA dominant-negative cells, these results suggest that activated RhoA-dependent Dia-2 probably functions as a link between RhoA and Src in KSHV-infected cells, mediating the sustained Src activation, and that KSHV-induced Src and RhoA play roles in facilitating entry into adherent target cells.  相似文献   
132.
Ashwagandha ( Withania somnifera Dunal., Solanaceae) is one of the most reputed medicinal plants of Ayurveda, the traditional medical system. Several of its traditionally proclaimed medicinal properties have been corroborated by recent molecular pharmacological investigations and have been shown to be associated with its specific secondary metabolites known as withanolides, the novel group of ergostane skeletal phytosteroids named after the plant. Withanolides are structurally distinct from tropane/nortropane alkaloids (usually found in Solanaceae plants) and are produced only by a few genera within Solanaceae. W. somnifera contains many structurally diverse withanolides in its leaves as well as roots. To date, there has been little biosynthetic or metabolism-related research on withanolides. It is thought that withanolides are synthesized in leaves and transported to roots like the tropane alkaloids, a group of bioactive secondary metabolites in Solanaceae members known to be synthesized in roots and transported to leaves for storage. To examine this, we have studied incorporation of 14C from [2-14C]-acetate and [U-14C]-glucose into withanolide A in the in vitro cultured normal roots as well as native/orphan roots of W. somnifera . Analysis of products by thin layer chromatography revealed that these primary metabolites were incorporated into withanolide A, demonstrating that root-contained withanolide A is de novo synthesized within roots from primary isoprenogenic precursors. Therefore, withanolides are synthesized in different parts of the plant (through operation of the complete metabolic pathway) rather than imported.  相似文献   
133.
134.

Medicinal and aromatic plants possess pharmacological properties (antidiabetes, anticancer, antihypertension, anticardiovascular, antileprosy, etc.) because of their potential to synthesize a wide range of therapeutic bioactive secondary metabolites. The concentration of bioactive secondry metabolites depends on plant species, local environment, soil type and internal microbiome. The internal microbiome of medicinal plants plays the crucial role in the production of bioactive secondary metabolites, namely alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, quinols and phenols. In this review, the host specific secondry metabolites produced by endophytes, their therapeutic properties and host-endophytes interaction in relation to production of bioactive secondry metaboloites and the role of endophytes in enhancing the production of bioactive secondry metabolites is discussed. How biological nitrogen fixation, phosphorus solubilization, micronutrient uptake, phytohormone production, disease suppression, etc. can play a vital role in enhacing the plant growth and development.The role of endophytes in enhancing the plant growth and content of bioactive secondary metabolites in medicinal and aromatic plants in a sustainable mode is highlighted.

  相似文献   
135.
Ribosome-inactivating proteins (RIPs) are toxic proteins synthesized by many plants and some bacteria, that specifically depurinate the 28S RNA and thus interrupt protein translation. RIPs hold broad interest because of their potential use as plant defense factors against pathogens. However, study of the activity of type I RIPs has been hampered since their expression in Escherichia coli has typically been toxic to the model system. Mirabilis expansa, an Andean root crop, produces a type I RIP called ME1 in large quantities in its storage roots. In this study, the cDNA sequence of ME1 was used to successfully express the recombinant ME1 protein in E. coli. The production of recombinant ME1 in E. coli was confirmed by Western blot analysis using anti-ME1 antibodies. The studies with fluorescence-labeled ME1 showed that ME1 can enter bacteria and be distributed in the cytoplasm uniformly, indicating its ability to access the protein synthesis machinery of the bacteria. The recombinant enzyme was active and depurinated yeast ribosomes. However, both native and recombinant ME1 proteins failed to depurinate the E. coli ribosomes, explaining the non-toxicity of recombinant ME1 to E. coli. Structural modeling of ME1 showed that it has folding patterns similar to other RIPs, indicating that ME1 and PAP, which share a similar folding pattern, can show different substrate specificity towards E. coli ribosomes. The results presented here are very significant, as few reports are available in the area of bacterial interaction with type I RIPs.  相似文献   
136.
To investigate the role of CD4 and CD8 T cells in arthritis, we generated transgenic mice deficient in CD4 and CD8 molecules expressing RA-susceptible gene HLA-DQ8. DQ8.CD4(-/-) mice were resistant to developing collagen-induced arthritis (CIA). However, DQ8.CD8(-/-) mice developed CIA with increased incidence and more severity than DQ8 mice. Both DQ8.CD8(-/-) and DQ8 mice produced rheumatoid factor. In addition, DQ8.CD8(-/-) mice produced antinuclear Abs. The B cell compartment and expression of DQ8 were normal in all the strains, although frequency of cells expressing DQ8 was less in CD4(-/-) mice. An increased frequency of CD3(+) double-negative (DN) T cells was found in DQ8.CD8(-/-) compared with DQ8.CD4(-/-) and DQ8 mice. These CD3(+) DN T cells produced high amounts of IL-10 in CD8-deficient mice. Analysis of cell division using a cell cycle tracking dye showed a higher rate of division of CD3(+) and CD3(+) DN T cells in DQ8.CD8(-/-) mice compared with DQ8.CD4(-/-) and DQ8 mice. Decreased apoptosis was seen in CIA-susceptible DQ8 and CD8-deficient mice, indicating a defect in activation-induced cell death. These observations suggest that CD4 cells are necessary for initiation of CIA in DQ8 mice. We hypothesize that CD8(+) T cells are not capable of initiating CIA in DQ8-transgenic mice but may have a regulatory/protective effect.  相似文献   
137.
138.
Arabidopsis thaliana AKR2A plays an important role in plant responses to cold stress. However, its exact function in plant resistance to cold stress remains unclear. In the present study, we found that the contents of very long‐chain fatty acids (VLCFAs) in akr2a mutants were decreased, and the expression level of KCS1 was also reduced. Overexpression of KCS1 in the akr2a mutants could enhance VLCFAs contents and chilling tolerance. Yeast‐2‐hybrid and bimolecular fluorescence complementation (BIFC) results showed that the transmembrane motif of KCS1 interacts with the PEST motif of AKR2A both in vitro and in vivo. Overexpression of KCS1 in akr2a mutants rescued akr2a mutant phenotypes, including chilling sensitivity and a decrease of VLCFAs contents. Moreover, the transgenic plants co‐overexpressing AKR2A and KCS1 exhibited a greater chilling tolerance than the plants overexpressing AKR2A or KCS1 alone, as well as the wild‐type. AKR2A knockdown and kcs1 knockout mutants showed the worst performance under chilling conditions. These results indicate that AKR2A is involved in chilling tolerance via an interaction with KCS1 to affect VLCFA biosynthesis in Arabidopsis.  相似文献   
139.
Considering importance of a microbial strain capable of increased cellulases production and insensitive to catabolite repression for industrial use, we have developed a mutant strain of Trichoderma citrinoviride by multiple exposures to EMS and ethidium bromide. The mutant produced 0.63, 3.12, 8.22 and 1.94 IU ml(-1) FPase, endoglucanase, beta-glucosidase and cellobiase, respectively. These levels were, respectively, 2.14, 2.10, 4.09 and 1.73 fold higher than those in parent strain. Glucose (upto 20 mM) did not repress enzyme production by the mutant under submerged fermentation conditions. In vitro activity assay with partially purified cellulase showed lack of inhibition by glucose. Interestingly, the partially purified endoglucanase and beta-glucosidase were activated by 2.0 fold and 2.6 fold, respectively, by 20 mM and 30 mM ethanol in the assay mixture. Genetic distinction of the mutant was revealed by the presence of two unique amplicans in comparative DNA fingerprinting performed using 20 random primers.  相似文献   
140.
Biofortification through genetic manipulation is the best approach for improving micronutrient content of the staple food crops to alleviate hidden hunger, namely, the deficiency of Fe and Zn affecting more than two billion people worldwide. An interspecific hybridization was made between T. aestivum line Chinese Spring (CS) and Aegilops kotschyi accession 3790 selected for high grain iron and zinc concentration. The CS × Ae. kotschyi F1 hybrid with low chromosome pairing was highly male and female sterile. This was backcrossed with wheat cultivars to get seed set. The selfed BC1F1 and BC2F1 plants with high grain iron and zinc concentration were selected in subsequent generations. The selected derivatives showed 60–136% enhanced grain iron and zinc concentration and 50–120% increased iron and zinc content per seed as compared to the recipient wheat cultivars. Thirteen cytologically stable, fertile and agronomically superior plants with high grain iron and zinc concentrations were selected for molecular characterization. The application of anchored wheat SSR markers, transferable to Ae. kotschyi, to the high grain iron and zinc containing derivatives indicated introgression of group 2 and group 7 chromosomes of Ae. kotschyi. GISH and FISH analysis of some derivatives confirmed the substitution of chromosomes 2S and 7U for their homoeologues of the A genome, suggesting that some of the genes controlling high grain micronutrient content in the Ae. kotschyi accession are on these chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号