首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1805篇
  免费   169篇
  2022年   18篇
  2021年   36篇
  2020年   20篇
  2019年   13篇
  2018年   23篇
  2017年   20篇
  2016年   38篇
  2015年   67篇
  2014年   95篇
  2013年   82篇
  2012年   99篇
  2011年   119篇
  2010年   79篇
  2009年   63篇
  2008年   90篇
  2007年   93篇
  2006年   84篇
  2005年   81篇
  2004年   79篇
  2003年   82篇
  2002年   66篇
  2001年   29篇
  2000年   30篇
  1999年   29篇
  1998年   42篇
  1997年   35篇
  1996年   27篇
  1995年   24篇
  1994年   23篇
  1993年   11篇
  1992年   21篇
  1991年   14篇
  1990年   18篇
  1989年   15篇
  1988年   13篇
  1987年   14篇
  1985年   15篇
  1984年   16篇
  1983年   17篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   10篇
  1978年   12篇
  1977年   11篇
  1976年   15篇
  1975年   17篇
  1974年   16篇
  1972年   11篇
  1969年   11篇
排序方式: 共有1974条查询结果,搜索用时 62 毫秒
81.
The epidermal growth factor receptor (EGFR) signaling pathway regulates cell proliferation, differentiation, and survival, and is frequently dysregulated in esophageal and gastric cancers. Few studies have comprehensively examined the association between germline genetic variants in the EGFR pathway and risk of esophageal and gastric cancers. Based on a genome-wide association study in a Han Chinese population, we examined 3443 SNPs in 127 genes in the EGFR pathway for 1942 esophageal squamous cell carcinomas (ESCCs), 1758 gastric cancers (GCs), and 2111 controls. SNP-level analyses were conducted using logistic regression models. We applied the resampling-based adaptive rank truncated product approach to determine the gene- and pathway-level associations. The EGFR pathway was significantly associated with GC risk (P = 2.16×10−3). Gene-level analyses found 10 genes to be associated with GC, including FYN, MAPK8, MAP2K4, GNAI3, MAP2K1, TLN1, PRLR, PLCG2, RPS6KB2, and PIK3R3 (P<0.05). For ESCC, we did not observe a significant pathway-level association (P = 0.72), but gene-level analyses suggested associations between GNAI3, CHRNE, PAK4, WASL, and ITCH, and ESCC (P<0.05). Our data suggest an association between specific genes in the EGFR signaling pathway and risk of GC and ESCC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.  相似文献   
82.
A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of Plasmodium falciparum. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.  相似文献   
83.
84.
The phytotoxicity of Mn is important globally due to its increased solubility in acid or waterlogged soils. Short‐term (≤24 h) solution culture studies with 150 µM Mn were conducted to investigate the in situ distribution and speciation of Mn in apical tissues of hydrated roots of cowpea [Vigna unguiculata (L.) Walp. cv. Red Caloona] using synchrotron‐based techniques. Accumulation of Mn was rapid; exposure to 150 µM Mn for only 5 min resulting in substantial Mn accumulation in the root cap and associated mucigel. The highest tissue concentrations of Mn were in the root cap, with linear combination fitting of the data suggesting that ≥80% of this Mn(II) was associated with citrate. Interestingly, although the primary site of Mn toxicity is typically the shoots, concentrations of Mn in the stele of the root were not noticeably higher than in the surrounding cortical tissues in the short‐term (≤24 h). The data provided here from the in situ analyses of hydrated roots exposed to excess Mn are, to our knowledge, the first of this type to be reported for Mn and provide important information regarding plant responses to high Mn in the rooting environment.  相似文献   
85.
The budding yeast G-tail binding complex CST (Cdc13-Stn1-Ten1) is crucial for both telomere protection and replication. Previous studies revealed a family of Cdc13 orthologues (Cdc13A) in Candida species that are unusually small but are nevertheless responsible for G-tail binding and the regulation of telomere lengths and structures. Here we report the identification and characterization of a second family of Cdc13-like proteins in the Candida clade, named Cdc13B. Phylogenetic analysis and sequence alignment indicate that Cdc13B probably arose through gene duplication prior to Candida speciation. Like Cdc13A, Cdc13B appears to be essential. Deleting one copy each of the CDC13A and CDC13B genes caused a synergistic effect on aberrant telomere elongation and t-circle accumulation, suggesting that the two paralogues mediate overlapping and nonredundant functions in telomere regulation. Interestingly, Cdc13B utilizes its C-terminal OB-fold domain (OB4) to mediate self-association and binding to Cdc13A. Moreover, the stability of the heterodimer is evidently greater than that of either homodimer. Both the Cdc13 A/A homodimer and A/B heterodimer, but not the B/B homodimer, recognized the telomere G-tail repeat with high affinity and sequence specificity. Our results reveal novel evolutionary elaborations of the G-tail-binding protein in Saccharomycotina yeast, suggesting a drastic remodeling of CDC13 that entails gene duplication, fusion, and functional specialization. The repeated and independent duplication of G-tail-binding proteins such as Cdc13 and Pot1 hints at the evolutionary advantage of having multiple G-tail-binding proteins.  相似文献   
86.
Expression of the receptor tyrosine kinase-like orphan receptor 2 (Ror2) has been identified in an increasing array of tumor types and is known to play a role as an important mediator of Wnt signaling cascades. In this study, we aimed to clarify Ror2 interactions with the Wnt pathways within the context of renal cell carcinoma (RCC). An examination of Ror2 expression in primary human RCC tumors showed a significant correlation with several Wnt signaling genes, including the classical feedback target gene Axin2. We provide evidence that Ror2 expression results in a partially activated state for canonical Wnt signaling through an increased signaling pool of β-catenin, leading to an enhancement of downstream target genes following Wnt3a stimulation in both renal and renal carcinoma-derived cells. Additionally, inhibition of low-density lipoprotein receptor-related protein 6 (LRP6) with either siRNA or dickkopf decreased the response to Wnt3a stimulation, but no change was seen in the increased β-catenin pool associated with Ror2 expression, suggesting that LRP6 cofactor recruitment is necessary for a Wnt3a-induced signal but that it does not participate in the Ror2 effect on β-catenin signaling. These results highlight a new role for Ror2 in conveying a tonic signal to stabilize soluble β-catenin and create a poised state of enhanced responsiveness to Wnt3a exogenous signals in RCC.  相似文献   
87.
The electrical phenomena and morphing structures in the Venus flytrap have attracted researchers since the nineteenth century. We have observed that mechanical stimulation of trigger hairs on the lobes of the Venus flytrap induces electrotonic potentials in the lower leaf. Electrostimulation of electrical circuits in the Venus flytrap can induce electrotonic potentials propagating along the upper and lower leaves. The instantaneous increase or decrease in voltage of stimulating potential generates a nonlinear electrical response in plant tissues. Any electrostimulation that is not instantaneous, such as sinusoidal or triangular functions, results in linear responses in the form of small electrotonic potentials. The amplitude and sign of electrotonic potentials depend on the polarity and the amplitude of the applied voltage. Electrical stimulation of the lower leaf induces electrical signals, which resemble action potentials, in the trap between the lobes and the midrib. The trap closes if the stimulating voltage is above the threshold level of 4.4 V. Electrical responses in the Venus flytrap were analyzed and reproduced in the discrete electrical circuit. The information gained from this study can be used to elucidate the coupling of intracellular and intercellular communications in the form of electrical signals within plants.  相似文献   
88.
Exposure to stressors at formative stages in the development of wildlife and humans can have enduring effects on health. Understanding which, when and how stressors cause enduring health effects is crucial because these stressors might then be avoided or mitigated during formative stages to prevent lasting increases in disease susceptibility. Nevertheless, the impact of early-life exposure to stressors on the ability of hosts to resist and tolerate infections has yet to be thoroughly investigated. Here, we show that early-life, 6-day exposure to the herbicide atrazine (mean ± s.e.: 65.9±3.48 µg l−1) increased frog mortality 46 days after atrazine exposure (post-metamorphosis), but only when frogs were challenged with a chytrid fungus implicated in global amphibian declines. Previous atrazine exposure did not affect resistance of infection (fungal load). Rather, early-life exposure to atrazine altered growth and development, which resulted in exposure to chytrid at more susceptible developmental stages and sizes, and reduced tolerance of infection, elevating mortality risk at an equivalent fungal burden to frogs unexposed to atrazine. Moreover, there was no evidence of recovery from atrazine exposure. Hence, reducing early-life exposure of amphibians to atrazine could reduce lasting increases in the risk of mortality from a disease associated with worldwide amphibian declines. More generally, these findings highlight that a better understanding of how stressors cause enduring effects on disease susceptibility could facilitate disease prevention in wildlife and humans, an approach that is often more cost-effective and efficient than reactive medicine.  相似文献   
89.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号