首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   11篇
  国内免费   2篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   10篇
  2012年   16篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有178条查询结果,搜索用时 265 毫秒
101.
BackgroundEnteric fever due to Salmonella Typhi (typhoid fever) occurs in urban areas with poor sanitation. While direct fecal-oral transmission is thought to be the predominant mode of transmission, recent evidence suggests that indirect environmental transmission may also contribute to disease spread.MethodsData from a population-based infectious disease surveillance system (28,000 individuals followed biweekly) were used to map the spatial pattern of typhoid fever in Kibera, an urban informal settlement in Nairobi Kenya, between 2010–2011. Spatial modeling was used to test whether variations in topography and accumulation of surface water explain the geographic patterns of risk.ResultsAmong children less than ten years of age, risk of typhoid fever was geographically heterogeneous across the study area (p = 0.016) and was positively associated with lower elevation, OR = 1.87, 95% CI (1.36–2.57), p <0.001. In contrast, the risk of typhoid fever did not vary geographically or with elevation among individuals less than 6b ten years of age.ConclusionsOur results provide evidence of indirect, environmental transmission of typhoid fever among children, a group with high exposure to fecal pathogens in the environment. Spatially targeting sanitation interventions may decrease enteric fever transmission.  相似文献   
102.
Coordination of cell death and survival is crucial during embryogenesis and adulthood, and alteration of this balance can result in degeneration or cancer. Growth factor receptors such as Met can activate phosphatidyl-inositol-3' kinase (PI3K), a major intracellular mediator of growth and survival. PI3K can then antagonize p53-triggered cell death, but the underlying mechanisms are not fully understood. We used genetic and pharmacological approaches to uncover Met-triggered signaling pathways that regulate hepatocyte survival during embryogenesis. Here, we show that PI3K acts via mTOR (Frap1) to regulate p53 activity both in vitro and in vivo. mTOR inhibits p53 by promoting the translation of Mdm2, a negative regulator of p53. We also demonstrate that the PI3K effector Akt is required for Met-triggered Mdm2 upregulation, in addition to being necessary for the nuclear translocation of Mdm2. Inhibition of either mTOR or Mdm2 is sufficient to block cell survival induced by Hgf-Met in vitro. Moreover, in vivo inhibition of mTOR downregulates Mdm2 protein levels and induces p53-dependent apoptosis. Our studies identify a novel mechanism for Met-triggered cell survival during embryogenesis, involving translational regulation of Mdm2 by mTOR. Moreover, they reinforce mTOR as a potential drug target in cancer.  相似文献   
103.
104.
A plasmid vector has been constructed that directs the synthesis of high levels (approximately 2% of total cellular protein) of fusions between a target protein and maltose-binding protein (MBP) in Escherichia coli. The MBP domain is used to purify the fusion protein in a one step procedure by affinity chromatography to crosslinked amylose resin. The fusion protein contains the recognition sequence (Ile-Glu-Gly-Arg) for blood coagulation factor Xa protease between the two domains. Cleavage by factor Xa separates the two domains and the target protein domain can then be purified away from the MBP domain by repeating the affinity chromatography step. A prokaryotic (beta-galactosidase) and a eukaryotic (paramyosin) protein have been successfully purified by this method.  相似文献   
105.
The epithelial cell lining of the respiratory groove ofAlma emini,an oligochaete glossoscolecid worm that lives in a hydrogen sulfide (H2S)-rich tropical swamp, was investigated by transmission electron microscopy to determine the underlying structural adaptations which enable the worm to subsist in a highly inimical habitat. The epithelium of the respiratory groove is made up of squamous cells with a highly amplified free epithelial surface. The cells are tightly packed with electron dense sulfur metabolizing bodies (SMBs) and contain endosymbiotic bacteria. Presence of sulfur in the electron dense SMBs was confirmed by X-ray microanalysis. Certain eukaryotic cells with prominent filopodia-like cytoplasmic extensions were observed under the epithelial cells and in the muscle tissue. The cells contained numerous heteromorphic endosymbiotic bacteria and scattered SMBs. Both the SMBs and the bacteria are reckoned to be involved in scavenging and detoxifying H2S. The removal of sulfide complexes was observed to occur through excision of blebs formed by epithelial cell membrane elaborations and by exocytosis of crystalline-like particles. These adaptive stratagems generally correspond with those that have been adopted by many marine and hydrothermal vent organisms that occupy sulfide-rich biomes. The congruent adaptive stratagems and ultrastructural morphologies in such a diverse community of organisms have been imposed by a common need to neutralize the insidious effects of H2S in their environments.  相似文献   
106.
107.
108.
The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity.  相似文献   
109.

Background

Malaria is the commonest cause of childhood morbidity in Western Kenya with varied heamatological consequences. The t study sought to elucidate the haemotological changes in children infected with malaria and their impact on improved diagnosis and therapy of childhood malaria.

Methods

Haematological parameters in 961 children, including 523 malaria-infected and 438 non-malaria infected, living in Kisumu West District, an area of malaria holoendemic transmission in Western Kenya were evaluated.

Results

The following parameters were significantly lower in malaria-infected children; platelets, lymphocytes, eosinophils, red blood cell count and haemoglobin (Hb), while absolute monocyte and neutrophil counts, and mean platelet volume (MPV) were higher in comparison to non-malaria infected children. Children with platelet counts of <150,000/uL were 13.8 times (odds ratio) more likely to have malaria. Thrombocytopaenia was present in 49% of malaria-infected children and was associated with high parasitaemia levels, lower age, low Hb levels, increased MPV and platelet aggregate flag. Platelet aggregates were more frequent in malaria-infected children (25% vs. 4%, p<0.0001) and associated with thrombocytopaenia rather than malaria status.

Conclusion

Children infected with Plasmodium falciparum malaria exhibited important changes in some haematological parameters with low platelet count and haemoglobin concentration being the two most important predictors of malaria infection in children in our study area. When used in combination with other clinical and microscopy, these parameters could improve malaria diagnosis in sub-patent cases.
  相似文献   
110.
NR4A nuclear receptors are a diverse group of orphan nuclear receptors with critical roles in regulating cell proliferation and cell differentiation. The ortholog of the NR4A nuclear receptor in Caenorhabditis elegans, NHR‐6, also has a role in cell proliferation and cell differentiation during organogenesis of the spermatheca. Here we show that NHR‐6 is able to bind the canonical NR4A monomer response element and can transactivate from this site in mammalian HEK293 cells. Using a functional GFP‐tagged NHR‐6 fusion, we also demonstrate that NHR‐6 is nuclear localized during development of the spermatheca. Mutation of the DNA‐binding domain of NHR‐6 abolishes its activity in genetic rescue assays, demonstrating a requirement for the DNA‐binding domain. This study represents the first genetic demonstration of an in vivo requirement for an NR4A nuclear receptor DNA‐binding domain in a whole organism. genesis 48:485–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号