首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   7篇
  135篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   7篇
  2011年   18篇
  2010年   9篇
  2009年   7篇
  2008年   4篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1987年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
81.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   
82.
Multivariate spatial statistics techniques can be efficiently applied to generate fine spatial patterns of climate data in presence of an appropriate multivariate spatial structure over ungauged mountainous basins. However, they can become unsuitable when the data available over complex regions are sparse and affected by discordant spatial scales in primary and (colocated)-auxiliary variables. This is the case of actual evapotranspiration (AET). Combining GIS and geoindicators (e.g., topographical and vegetational indices), we proposed an upscaling procedure to overcome this problem, transforming a preliminary-smoothed macro-scale pattern (AET grid-data), into a local-scale pattern.The procedure was applied to a cropland test site at Mediterranean sub-regional basin scale (Tammaro, South Italy) to develop a climatological baseline estimation of AET refined at slope scale. After the upscaling, the most frequent estimated AET values were about 550 mm yr?1 (with quasi-normal distribution), while underestimations were observed in the preliminary, smoothed map (positively skewed distribution with mean 460 mm yr?1). The upscaling allowed the influence of the topographic factor to emerge, with a wider range of values (about 300–900 mm yr?1) being estimated and substantially not visible in the smoothed pattern. A temporal climate pattern of soil water depletion in the growing season was also shown as reflected in the increase of AET flux in the period 1991–2008 in comparison to the precedent climate (1961–1990).  相似文献   
83.
We studied the phosphoglucomutase phenotype in relation to fertility parameters in a consecutive series of 204 women who had delivered a normal live-born child in Rome. A highly significant association was found between age of the women and phosphoglucomutase phenotype, suggesting a reduced rate of reproduction among women of phosphoglucomutase Type 1. Previous spontaneous abortion appears related to both age and phosphoglucomutase enzymatic type. An increased incidence of abortion in women of older ages was observed only in phosphoglucomutase Type 1. Gestational duration and fetal intrauterine growth rate are also significantly associated with maternal phosphoglucomutase phenotype. The pattern is complex, but also in this instance the influence of maternal age was evident. Considered altogether, the data suggest that phosphoglucomutase may have an important role in zygote development and survival through the whole span of intrauterine life.  相似文献   
84.
Gap junctions play a central role in coordinating intercellular signal-transduction pathways to control tissue homeostasis. Deregulation of gap junctional intercellular communication is a common phenotype of cancer cells and supports its involvement in the carcinogenesis process. Many carcinogens, like environmental heavy-metal chemical pollutants, are known to activate various signal transduction mechanisms and modulate GJIC. They act as tumor promoters on preexisting "initiated" cells, rather than as genotoxic initiators, albeit their mode of action is often unknown. In this study we investigated the effect of Hg(II) (HgCl(2)) on GJIC in cultured human keratinocytes. It is shown that subcytotoxic concentrations of HgCl(2) as low as 10 nM cause inhibition of the GJIC, assessed by dye transfer assay, despite enhanced expression of connexins. In addition, HgCl(2)-treated keratinocytes exhibited a decrease of free thiols and accumulation of mitochondria-derived reactive oxygen species, albeit no effect on the respiratory chain activity was observed. Treatment of HgCl(2)-exposed keratinocytes with the PKC inhibitor calphostin C and with all-trans retinoic acid resulted in rescue of the mitochondrial ROS overproduction and full recovery of the GJIC. Similar results were obtained with the PKA activator db-cAMP. Overall, the presented results support a cross-talk between the altered intracellular redox tone and PKA- and PKC-mediated signaling in HgCl(2)-challenged keratinocytes. These events, although not cytotoxic, lead to inhibition of GJIC and possibly to carcinogenic priming.  相似文献   
85.
A study is presented on the pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of purified cytochrome c oxidase (COX) from beef heart reconstituted in phospholipid vesicles (COV). Protons were shown to be released from COV both in the oxidative and reductive phases. In the oxidation by O2 of the fully reduced oxidase, the H+/COX ratio for proton release from COV (R --> O transition) decreased from approximately 2.4 at pH 6.5 to approximately 1.8 at pH 8.5. In the direct reduction of the fully oxidized enzyme (O --> R transition), the H+/COX ratio for proton release from COV increased from approximately 0.3 at pH 6.5 to approximately 1.6 at pH 8.5. Anaerobic oxidation by ferricyanide of the fully reduced oxidase, reconstituted in COV or in the soluble case, resulted in H+ release which exhibited, in both cases, an H+/COX ratio of 1.7-1.9 in the pH range 6.5-8.5. This H+ release associated with ferricyanide oxidation of the oxidase, in the absence of oxygen, originates evidently from deprotonation of acidic groups in the enzyme cooperatively linked to the redox state of the metal centers (redox Bohr protons). The additional H+ release (O2 versus ferricyanide oxidation) approaching 1 H+/COX at pH < or = 6.5 is associated with the reduction of O2 by the reduced metal centers. At pH > or = 8.5, this additional proton release takes place in the reductive phase of the catalytic cycle of the oxidase. The H+/COX ratio for proton release from COV in the overall catalytic cycle, oxidation by O2 of the fully reduced oxidase directly followed by re-reduction (R --> O --> R transition), exhibited a bell-shaped pH dependence approaching 4 at pH 7.2. A mechanism for the involvement in the proton pump of the oxidase of H+/e- cooperative coupling at the metal centers (redox Bohr effects) and protonmotive steps of reduction of O2 to H2O is presented.  相似文献   
86.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   
87.
Rat Oatp1 (Slc21a1) is an organic anion-transporting polypeptide believed to be an anion exchanger. To characterize its mechanism of transport, Oatp1 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. Protein was present at high levels in isolated S. cerevisiae secretory vesicles but had minimal posttranslational modifications and failed to exhibit taurocholate transport activity. Apparent molecular mass (M) of Oatp1 in yeast was similar to that of unmodified protein, approximately 62 kDa, whereas in liver plasma membranes Oatp1 has an M of approximately 85 kDa. To assess whether underglycosylation of Oatp1 in yeast suppressed functional activity, Oatp1 was expressed in Xenopus laevis oocytes with and without tunicamycin, a glycosylation inhibitor. With tunicamycin, M of Oatp1 decreased from approximately 72 to approximately 62 kDa and transport activity was nearly abolished. Mutations to four predicted N-glycosylation sites on Oatp1 (Asn to Asp at positions 62, 124, 135, and 492) revealed a cumulative effect on function of Oatp1, leading to total loss of taurocholate transport activity when all glycosylation sites were removed. M of the quadruple mutant was approximately 62 kDa, confirming that these asparagine residues are sites of glycosylation in Oatp1. Relatively little of the quadruple mutant was able to reach the plasma membrane, and most remained in unidentified intracellular compartments. In contrast, two of the triple mutants tested (N62/124/135D and N124/135/492D) were present in the plasma membrane fraction yet exhibited minimal transport activity. These results demonstrate that both membrane targeting and functional activity of Oatp1 are controlled by the extent of N-glycosylation.  相似文献   
88.
89.
The role played by oxidative stress in amiodarone-induced mitochondrial toxicity is debated. Dronedarone shows pharmacological properties similar to those of amiodarone but several differences in terms of toxicity. In this study, we analyzed the effects of the two drugs on liver mitochondrial function by administering an equivalent human dose to a rat model. Amiodarone increased mitochondrial H(2)O(2) synthesis, which in turn induced cardiolipin peroxidation. Moreover, amiodarone inhibited Complex I activity and uncoupled oxidative phosphorylation, leading to a reduction in the hepatic ATP content. We also observed a modification of membrane phospholipid composition after amiodarone administration. N-acetylcysteine completely prevented such effects. Although dronedarone shares with amiodarone the capacity to induce uncoupling of oxidative phosphorylation, it did not show any of the oxidative effects and did not impair mitochondrial bioenergetics. Our data provide important insights into the mechanism of mitochondrial toxicity induced by amiodarone. These results may greatly influence the clinical application and toxicity management of these two antiarrhythmic drugs.  相似文献   
90.
Eukaryotic sodium channels are important membrane proteins involved in ion permeation, homeostasis, and electrical signaling. They are long, multidomain proteins that do not express well in heterologous systems, and hence, structure/function and biochemical studies on purified sodium channel proteins have been limited. Bacteria produce smaller, homologous tetrameric single domain channels specific for the conductance of sodium ions. They consist of N-terminal voltage sensor and C-terminal pore subdomains. We designed a functional pore-only channel consisting of the final two transmembrane helices, the intervening P-region, and the C-terminal extramembranous region of the sodium channel from the marine bacterium Silicibacter pomeroyi. This sodium "pore" channel forms a tetrameric, folded structure that is capable of supporting sodium flux in phospholipid vesicles. The pore-only channel is more thermally stable than its full-length counterpart, suggesting that the voltage sensor subdomain may destabilize the full-length channel. The pore subdomains can assemble, fold, and function independently from the voltage sensor and exhibit similar ligand-blocking characteristics as the intact channel. The availability of this simple pore-only construct should enable high-level expression for the testing of potential new ligands and enhance our understanding of the structural features that govern sodium selectivity and permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号