首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   4篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   8篇
  2011年   14篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   11篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1980年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
71.
The generation of multiprotein complexes at receptors and adapter proteins is crucial for the activation of intracellular signaling pathways. In this study, we used multiple biochemical and biophysical methods to examine the binding properties of several SH2 and SH3 domain-containing signaling proteins as they interact with the adapter protein linker for activation of T-cells (LAT) to form multiprotein complexes. We observed that the binding specificity of these proteins for various LAT tyrosines appears to be constrained both by the affinity of binding and by cooperative protein-protein interactions. These studies provide quantitative information on how different binding parameters can determine in vivo binding site specificity observed for multiprotein signaling complexes.  相似文献   
72.
In this paper, the mechanism of proton pumping in cytochrome c oxidase is examined. Data on cooperative linkage of vectorial proton translocation to oxido-reduction of Cu(A) and heme a in the CO-inhibited, liposome-reconstituted bovine cytochrome c oxidase are reviewed. Results on proton translocation associated to single-turnover oxido-reduction of the four metal centers in the unliganded, membrane-reconstituted oxidase are also presented. On the basis of these results, X-ray crystallographic structures and spectrometric data for a proton pumping model in cytochrome c oxidase is proposed. This model, which is specifically derived from data available for the bovine cytochrome c oxidase, is intended to illustrate the essential features of cooperative coupling of proton translocation at the low potential redox site. Variants will have to be introduced for those members of the heme copper oxidase family which differ in the redox components of the low potential site and in the amino acid network connected to this site. The model we present describes in detail steps of cooperative coupling of proton pumping at the low potential Cu(A)-heme a site in the bovine enzyme. It is then outlined how this cooperative proton transfer can be thermodynamically and kinetically coupled to the chemistry of oxygen reduction to water at the high potential Cu(B)-heme a(3) center, so as to result in proton pumping, in the turning-over enzyme, against a transmembrane electrochemical proton gradient of some 250 mV.  相似文献   
73.
Rat Oatp1 (Slc21a1) is an organic anion-transporting polypeptide believed to be an anion exchanger. To characterize its mechanism of transport, Oatp1 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. Protein was present at high levels in isolated S. cerevisiae secretory vesicles but had minimal posttranslational modifications and failed to exhibit taurocholate transport activity. Apparent molecular mass (M) of Oatp1 in yeast was similar to that of unmodified protein, approximately 62 kDa, whereas in liver plasma membranes Oatp1 has an M of approximately 85 kDa. To assess whether underglycosylation of Oatp1 in yeast suppressed functional activity, Oatp1 was expressed in Xenopus laevis oocytes with and without tunicamycin, a glycosylation inhibitor. With tunicamycin, M of Oatp1 decreased from approximately 72 to approximately 62 kDa and transport activity was nearly abolished. Mutations to four predicted N-glycosylation sites on Oatp1 (Asn to Asp at positions 62, 124, 135, and 492) revealed a cumulative effect on function of Oatp1, leading to total loss of taurocholate transport activity when all glycosylation sites were removed. M of the quadruple mutant was approximately 62 kDa, confirming that these asparagine residues are sites of glycosylation in Oatp1. Relatively little of the quadruple mutant was able to reach the plasma membrane, and most remained in unidentified intracellular compartments. In contrast, two of the triple mutants tested (N62/124/135D and N124/135/492D) were present in the plasma membrane fraction yet exhibited minimal transport activity. These results demonstrate that both membrane targeting and functional activity of Oatp1 are controlled by the extent of N-glycosylation.  相似文献   
74.
A total of 203 couples with unexplained habitual abortions and 364 consecutive normal puerperae along with their live-born babies were studied. The analysis of wife-husband joint ABO blood group distribution in couples with habitual abortion showed an excess of A incompatible mating type and a defect of B incompatible type as compared with expected proportions assuming random mating. The joint wife-husband ABO blood group distribution was further analysed in relation to the adenosine deaminase (ADA) genotype. A defect of O-A and A-O couples when the wife carries the ADA*1/*1 genotype and the husband carries the ADA*2 allele, and a defect of O-O and A-A when the wife carries the ADA*2 allele were observed. In the sample of normal puerperae, analysis of the joint mother-newborn ABO distribution in relation to the ADA genotype showed a pattern similar to that observed in couples with habitual abortion, i.e. there is a defect of O-A and A-O when the mother carries the ADA*1/*1 genotype and the newborn carries the ADA*2 allele and a defect of O-O and A-A types when the mother carries the ADA*2 allele. Altogether the data suggest an early loss of O-A and A-O zygotes when they carry the ADA*2 allele and an early loss of O-O and A-A zygotes when the mother carries the ADA*2 allele resulting in a deficit of these zygotic classes among both spontaneously aborted fetuses and live-born infants. The pattern of association observed in the mother-fetus type O-A (incompatible according to conventional terminology) appears similar to that observed for the reciprocal A-O type (compatible according to conventional terminolgy). Therefore strictly conventional immunological mechanisms cannot explain the whole pattern of associations. Cell to cell interactions involving ABO antigens may have an important role at implantation: ADA, through the control of local adenosine concentration, could modulate these interactions influencing the probability of successful implantation.  相似文献   
75.
NK cell function is regulated by Ly49 receptors in mice and killer cell Ig-like receptors in humans. Although inhibitory Ly49 and killer cell Ig-like receptors predominantly ligate classical MHC class I molecules, recent studies suggest that their activating counterparts recognize infection. The quintessential example is resistance to the mouse CMV in C57BL/6 mice, which depends on the functional recognition of m157, a mouse CMV-encoded MHC class I-like molecule, by Ly49H, an activating NK cell receptor. We have taken advantage of the natural variation in closely related members of the Ly49C-like receptors and the availability of Ly49 crystal structures to understand the molecular determinants of the Ly49H-m157 interaction and to identify amino acid residues discriminating between m157 binding and nonbinding receptors. Using a site-directed mutagenesis approach, we have targeted residues conserved in receptors binding to m157 (Ly49H and Ly49I(129)) but different from receptors lacking m157 recognition (Ly49C, Ly49I(B6), and Ly49U). Wild-type and mutant receptors were transfected into reporter cells, and physical binding as well as functional activation by m157 was studied. Our findings suggested that the Ly49 MHC class I contact "site 2," I226, may not be involved in m157 binding. In contrast, residue Y146 and G151, mapping at the receptor homodimer interface, are likely critical for functional recognition of the m157 glycoprotein. Our combined functional and three-dimensional modeling approach suggested that the architecture of the Ly49H dimer is crucial to accessing m157, but not MHC class I. These results link Ly49 homodimerization variability to the direct recognition of pathogen products.  相似文献   
76.
Co-immunoprecipitation studies using mouse ileal proteins and transfected HEK-293 (human embryonic kidney-293) cells revealed that the two proteins, Ostalpha and Ostbeta, which generate the organic-solute transporter are able to immunoprecipitate each other, indicating a heteromeric complex. Mouse ileal Ostalpha protein appeared on Western blots largely as bands of 40 and 80 kDa, the latter band consistent with an Ostalpha homodimer, and both of these bands were sensitive to digestion by the glycosidase PNGase F (peptide:N-glycosidase F). Ostbeta appeared as bands of 17 and 19 kDa, and these bands were not sensitive to PNGase F. Both the 40 and 80 kDa forms of Ostalpha, and only the 19 kDa form of Ostbeta, were detected among the immunoprecipitated proteins, indicating that the interaction between Ostalpha and Ostbeta is associated with specific post-translational processing. Additional evidence for homodimerization of Ostalpha and for a direct interaction between Ostalpha and Ostbeta was provided by BiFC (bimolecular fluorescence complementation) analysis of HEK-293 cells transfected with Ostalpha and Ostbeta tagged with yellow-fluorescent-protein fragments. BiFC analysis and surface immunolabelling of transfected HEK-293 cells also indicated that the C-termini of both Ostalpha and Ostbeta are facing the intracellular space. The interaction between Ostalpha and Ostbeta was required not only for delivery of the proteins to the plasma membrane, but it increased their stability, as noted in transfected HEK-293 cells and in tissues from Ostalpha-deficient (Ostalpha-/-) mice. In Ostalpha-/- mice, Ostbeta mRNA levels were maintained, yet Ostbeta protein was not detectable, indicating that Ostbeta protein is not stable in the absence of Ostalpha. Overall, these findings identify the membrane topology of Ostalpha and Ostbeta, demonstrate that these proteins are present as heterodimers and/or heteromultimers, and indicate that the interaction between Ostalpha and Ostbeta increases the stability of the proteins and is required for delivery of the heteromeric complex to the plasma membrane.  相似文献   
77.
The nuclear receptor FXRalpha (NR1H4) plays a pivotal role in maintaining bile salt and lipid homeostasis by functioning as a bile salt sensor in mammals. In contrast, FXRbeta (NR1H5) from mouse is activated by lanosterol and does not share common ligands with FXRalpha. To further elucidate FXR ligand/receptor and structure/function relationships, we characterized a FXR gene from the marine skate, Leucoraja erinacea, representing a vertebrate lineage that diverged over 400 million years ago. Phylogenetic analysis of sequence data indicated that skate Fxr (sFxr) is a FXRbeta. There is an extra sequence in the middle of the sFxr ligand binding domain (LBD) compared with the LBD of FXRalpha. Luciferase reporter assays demonstrated that sFxr responds weakly to scymnol sulfate, bile salts, and synthetic FXRalpha ligands, in striking difference from human FXRalpha (hFXRalpha). Interestingly, all-trans retinoic acid was capable of transactivating both hFXRalpha and sFxr. When the extra amino acids in the sFxr LBD were deleted and replaced with the corresponding sequence from hFXRalpha, the mutant sFxr gained responsiveness to ursodeoxycholic acid, GW4064, and fexaramine. Surprisingly, chenodeoxycholic acid antagonized this activation. Together, these results indicate that FXR is an ancient nuclear receptor and suggest that FXRalpha may have acquired ligand specificity for bile acids later in evolution by deletion of a sequence from its LBD. Acquisition of this property may be an example of molecular exploitation, where an older molecule is recruited for a new functional role.  相似文献   
78.
Fever is a fundamental response to infection and a hallmark of inflammatory disease, which has been conserved and shaped through millions of years of natural selection. Although fever is able to stimulate both innate and adaptive immune responses, the very nature of all the molecular thermosensors, the timing and the detailed mechanisms translating a physical trigger into a fundamental biological response are incompletely understood. Here we discuss the consequence of hyperthermic stress in dendritic cells (DCs), and how the sole physical input is sensed as an alert stimulus triggering a complex transition in a very narrow temporal window. Importantly, we review recent findings demonstrating the significant and specific changes discovered in gene expression and in the metabolic phenotype associated with hyperthermia in DCs. Furthermore, we discuss the results that support a model based on a thermally induced autocrine signalling, which rewires and sets a metabolism checkpoint linked to immune activation of dendritic cells. Importantly, in this context, we highlight the novel regulatory functions discovered for IGFBP‐6 protein: induction of chemotaxis; capacity to increase oxidative burst and degranulation of neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role of IGFBP‐6 in autoimmune disease and how novel mechanistic insights could lead to exploit thermal stress‐related mechanisms in the context of cancer therapy.  相似文献   
79.
The liver is a major organ involved in regulating whole body manganese (Mn) homeostasis; however, the mechanisms of Mn transport across the hepatocyte basolateral and canalicular membranes remain poorly defined. To gain insight into these transport steps, the present study measured hepatic uptake and biliary excretion of Mn in an evolutionarily primitive marine vertebrate, the elasmobranch Leucoraja erinacea, the little skate. Mn was rapidly removed from the recirculating perfusate of isolated perfused skate livers in a dose-dependent fashion; however, only a small fraction was released into bile (< 2% in 6 h). Mn was also rapidly taken up by freshly isolated skate hepatocytes in culture. Mn uptake was inhibited by a variety of divalent metals, but not by cesium. Analysis of the concentration-dependence of Mn uptake revealed of two components, with apparent Km values 1.1 ± 0.1 µM and 112 ± 29 µM. The Km value for the high-affinity component was similar to the measured skate blood Mn concentration, 1.9 ± 0.5 µM. Mn uptake was reduced by nearly half when bicarbonate was removed from the culture medium, but was unaffected by a change in pH from 6.5 to 8.5, or by substitution of Na with Li or K. Mn efflux from the hepatocytes was also rapid, and was inhibited when cells were treated with 0.5 mM 2,4-dinitrophenol to deplete ATP levels. These data indicate that skate liver has efficient mechanisms for removing Mn from the sinusoidal circulation, whereas overall biliary excretion is low and appears to be mediated in part by an ATP-sensitive mechanism.  相似文献   
80.
HCN channels are thought to be structurally similar to Kv channels, but show much lower selectivity for K+. The ∼3.3 Å selectivity filter of K+ channels is formed by the pore-lining sequence XT(V/I)GYG, with X usually T, and is held stable by key residues in the P-loop. Differences in the P-loop sequence of HCN channels (eg. the pore-lining sequence L478C479IGYG) suggest these residues could account for differences in selectivity between these channel families. Despite being expressed, L478T/C479T HCN4 channels did not produce current. Since threonine in the second position is highly conserved in K+ channels, we also studied C479T channels. Based on permeability ratios (PX/PK), C479T HCN4 channels (K+(1)>Rb+(0.85)>Cs+(0.59)>Li+(0.50)≥Na+(0.49)) were less selective than WT rabbit HCN4 (K+(1)>Rb+(0.48)>Cs+(0.31)≥Na+(0.29)>Li+(0.03)), indicating that the TIGYG sequence is insufficient to confer K+ selectivity to HCN channels. C479T HCN4 channels had an increased permeability to large organic cations than WT HCN4 channels, as well as increased unitary K+ conductance, and altered channel gating. Collectively, these results suggest that HCN4 channels have larger pores than K+ channels and replacement of the cysteine at position 479 with threonine further increases pore size. Furthermore, selected mutations in other regions linked previously to pore stability in K+ channels (ie. S475D, S475E and F471W/K472W) were also unable to confer K+ selectivity to C479T HCN4 channels. Our findings establish the presence of the TIGYG pore-lining sequence does not confer K+ selectivity to rabbit HCN4 channels, and suggests that differences in selectivity of HCN4 versus K+ channels originate from differences outside the P-loop region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号