首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   366篇
  免费   18篇
  2023年   6篇
  2022年   6篇
  2021年   18篇
  2020年   5篇
  2019年   7篇
  2018年   15篇
  2017年   6篇
  2016年   9篇
  2015年   16篇
  2014年   17篇
  2013年   21篇
  2012年   27篇
  2011年   21篇
  2010年   18篇
  2009年   13篇
  2008年   13篇
  2007年   19篇
  2006年   10篇
  2005年   17篇
  2004年   13篇
  2003年   24篇
  2002年   14篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1975年   1篇
  1973年   3篇
  1971年   1篇
  1965年   1篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
331.
A distinct cysteine proteinase (NsCys) of northern shrimp Pandalus borealis belonging to cathepsin L subgroup of the papain superfamily has been overexpressed as a precursor form (proNsCys) in Pichia pastoris. We adopted a simple and quick procedure to generate an expression cassette by constructing a donor vector harboring proNsCys followed by recombination with an acceptor vector in a way so that the proNsCys gene was placed downstream of the methanol-inducible AOX1 promoter and alpha-mating factor signal sequence gene. In addition, we used glycerol complex medium that supported high growth of yeast before induction while induction was carried out in minimal methanol medium thereby facilitating the secreted protein to be purified with a single size-exclusion chromatography. The recombinant enzyme was purified in two enzymatically active fractions: both corresponding to mature NsCys with, however, the major one comprising two molecular species of NsCys which had their severed prodomain non-covalently attached. The overall yield was about 100 mg of crude or 60 mg of purified recombinant enzyme comprising both mature and prodomain-attached forms of NsCys per liter of yeast culture. The recombinant NsCys was biologically active as observed by gelatin zymography and its ability to cleave Z-Phe-Arg-MCA, a synthetic substrate for cathepsin L. The development of the system reported here provides a cost-effective and easy to manipulate expression system to obtain large quantities of fully functional shrimp enzyme that will enable the functional characterization of this unique enzyme for both research and industrial purposes.  相似文献   
332.
This study delineates the molecular mechanism underlying psychosine-induced oligodendroglial cell death. An immortalized human oligodendroglial cell line, MO3.13, was treated with exogenous psychosine (beta-galactosylsphingosine), a toxic metabolite that accumulates in the tissues of patients with Krabbe's disease. The mode of cell death induced by psychosine was found to be apoptotic, as revealed by different apoptotic markers viz., TUNEL, DNA fragmentation and caspase cleavage/activation. The action of psychosine was redox sensitive, as measured by changes in mitochondrial membrane potential (psidelta), and this effect of psychosine could be reversed by pre-treatment with the antioxidant molecules N-acetyl-l-cysteine or pro-cysteine. Psychosine directly affects the mitochondria as revealed by the activation of caspase 9 but not caspase 8. Up-regulation of the c-jun/c-jun N-terminal kinase pathway by psychosine leads to the induction of AP-1 and, at the same time, psychosine also down-regulates the lipopolysaccharide-induced NF-kappaB transactivation. These observations indicate that the mechanism of action of psychosine is, through the up-regulation of AP-1, a pro-apoptotic pathway as well as, through the down-regulation of the NF-kappaB pathway, an antiapoptotic pathway.  相似文献   
333.
The biological significance of the carbohydrate moiety of a glycoprotein has been a matter of much speculation. In the present work, we have chosen stem bromelain fromAnanas comosus as a model to investigate the role of glycosylation of proteins. Stem bromelain is a thiol protease which contains a single hetero-oligosaccharide unit per molecule. Here, the deglycosylated form of the enzyme was obtained by periodate oxidation. The differences in the glycosylated and deglycosylated forms of the glycoprotein have been studied at various temperatures and pH values, using probes such as loss of enzyme activity and by the changes in fluorescence and circular dichroism spectra. Deglycosylated bromelain showed decreased enzyme activity and perturbed fluorescence and circular dichroism spectra. In addition to this, a comparative study of their activities in different organic solvents showed a marked decrease in case of deglycosylated form of the enzyme. It is thus concluded that glycosylation contributes towards the functional stability of glycoenzymes.  相似文献   
334.
A protein proteinase inhibitor (PI) has been purified from pigeonpea Cajanus cajan (L.) PUSA 33 variety by acetic-acid precipitation, salt fractionation and chromatography on a DEAE-Cellulose column. The content of inhibitor was found to be 15 mg/20 g dry weight of pulse. The molecular weight of the inhibitor as determined by SDS-PAGE under reducing conditions was found to be about 14,000. It showed inhibitory activity toward proteolytic enzymes belonging to the serine protease group, namely trypsin and alpha-chymotrypsin. The inhibitory activity was stable over a wide range of pH and temperatures. Estimation of sulfhydryl groups yielded one free cysteine and at least two disulfide linkages. N-terminal sequence homology suggests that it belongs to the Kunitz inhibitor family. Structural analysis by circular dichroism shows that the inhibitor possesses a largely disordered structure.  相似文献   
335.
A systematic investigation of the acid-induced unfolding of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase) (GOD) from Aspergillus niger was made using steady-state tryptophan fluorescence, circular dichroism (CD), and ANS (1-anilino 8-naphthalene sulfonic acid) binding. Intrinsic tryptophan fluorescence studies showed a maximally unfolded state at pH 2.6 and the presence of a non-native intermediate in the vicinity of pH 1.4. Flavin adenine dinucleotide (FAD) fluorescence measurements indicate that the bound cofactors are released at low pH. In the pH range studied, near- and far-UV CD spectra show maximal loss of tertiary as well as secondary structure (40%) at pH 2.6 although glucose oxidase at this pH is relatively less denatured as compared to the conformation in 6M GdnHCl. Interestingly, in the vicinity of pH 1.4, glucose oxidase shows a refolded conformation (A-state) with approximately 90% of native secondary structure and native-like near-UV CD spectral features. ANS fluorescence studies, however, show maximal binding of the dye to the protein at pH 1.4, indicating a "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a more compact conformation at low pH. Thermal stability of this state was assessed by ellipticity changes at 222 nm relative to native protein. While native glucose oxidase showed a completely reversible thermal denaturation profile, the state at pH 1.4 showed approximately 50% structural loss and the denatured state appeared to be in a different conformation exhibiting prominent beta-sheet structure (around 85 degrees C) that was not reversible. To summarize; the A-state of GOD exists as a compact folded intermediate with "molten-globule"-like characteristics, viz., native-like secondary structure but with non-native cofactor environment, enhanced hydrophobic surface area and non-cooperative thermal unfolding. That the A-state also possesses significant tertiary structure is an interesting observation made in this study.  相似文献   
336.
The use of dilute acids to catalyze the hydrolysis of hemicellulose to its sugar constituents is well-known and effective. However, a major problem associated with this pretreatment is the poor fermentability of the produced hydrolyzate as a result of the presence of the microorganism's inhibitory compounds. In the present work, seven ion-exchange resins were tested in order to detoxify corn stover hydrolyzate. Regarding xylose recovery, it was observed that more than 92% recovery was feasible. Furfural removal varied from 53.% to 99.%, and hydroxymethylfurfural (HMF) removal was effective between 37% and 100%. Acetic acid was totally removed by Purolite A 103 S resin. Corn stover hydrolyzate (CSH) treated with Purolite A 103 S, and Finex CS 14 GC resins, was tested as substrate for xylitol production using a yeast, Candida mogii. Product yields, Yp/s, of 0.41 and 0.37 g/g and cellular yields, Yx/s, of 0.24 and 0.13 g/g, respectively, were obtained using the two types of resin-treated hydrolyzates.  相似文献   
337.
338.
The two flavodoxins (YkuN and YkuP) from Bacillus subtilis have been cloned, overexpressed in Escherichia coli and purified. DNA sequencing, mass spectrometry, and flavin-binding properties showed that both YkuN and YkuP were typical short-chain flavodoxins (158 and 151 amino acids, respectively) and that an error in the published B. subtilis genome sequence had resulted in an altered reading frame and misassignment of YkuP as a long-chain flavodoxin. YkuN and YkuP were expressed in their blue (neutral semiquinone) forms and reoxidized to the quinone form during purification. Potentiometry confirmed the strong stabilization of the semiquinone form by both YkuN and YkuP (midpoint reduction potential for oxidized/semiquinone couple = -105 mV/-105 mV) with respect to the hydroquinone (midpoint reduction potential for semiquinone/hydroquinone couple = -382 mV/-377 mV). Apoflavodoxin forms were generated by trichloroacetic acid treatment. Circular dichroism studies indicated that flavin mononucleotide (FMN) binding led to considerable structural rearrangement for YkuP but not for YkuN. Both apoflavodoxins bound FMN but not riboflavin avidly, as expected for short-chain flavodoxins. Structural stability studies with the chaotrope guanidinium chloride revealed that there is moderate destabilization of secondary and tertiary structure on FMN removal from YkuN, but that YkuP apoflavodoxin has similar (or slightly higher) stability compared to the holoprotein. Differential scanning calorimetry reveals further differences in structural stability. YkuP has a lower melting temperature than YkuN, and its endotherm is composed of a single transition, while that for YkuN is biphasic. Optical and fluorimetric titrations with oxidized flavodoxins revealed strong affinity (K(d) values consistently <5 microM) for their potential redox partner P450 BioI, YkuN showing tighter binding. Stopped-flow reduction studies indicated that the maximal electron-transfer rate (k(red)) to fatty acid-bound P450 BioI occurs from YkuN and YkuP at approximately 2.5 s(-1), considerably faster than from E. coli flavodoxin. Steady-state turnover with YkuN or YkuP, fatty acid-bound P450 BioI, and E. coli NADPH-flavodoxin reductase indicated that both flavodoxins supported lipid hydroxylation by P450 BioI with turnover rates of up to approximately 100 min(-1) with lauric acid as substrate. Interprotein electron transfer is a likely rate-limiting step. YkuN and YkuP supported monohydroxylation of lauric acid and myristic acid, but secondary oxygenation of the primary product was observed with both palmitic acid and palmitoleic acid as substrates.  相似文献   
339.
A novel neural-network-based model has been developed for the prediction of N-linked glycosylation characteristics related to glycosylation site-occupancy. Intracellular oligosaccharide transfer to a polypeptide is known to be either robust or dependent upon culture conditions during pharmaceutical production. This glycan attachment is classified by the model as robust or variable and is based on an input of the polypeptide primary sequence around the site of glycosylation. The glycosylation model utilizes multiple recurrent neural networks followed by a perceptron classifier. The input length of the polypeptide chain around the site of glycosylation (glycosylation window) was optimized through multiple independent training sessions. Incorporation of five residues prior (n - 5) to the site of glycosylation (n) and four residues beyond (n + 4) the glycan attachment site led to optimal network performance. The size of the glycosylation window for site-occupancy determination is much larger than has been previously reported. This model was developed to evaluate the effects of theoretical polypeptide mutations on glycosylation site-occupancy characteristics. Following correct prediction of the model testing data set, 20 independent networks were used to predict site-occupancy characteristics of wild-type and mutants of the rabies virus glycoprotein (rgp). Simulation results strongly correlated with previously published experimental results (Kasturi, L.; Hegang, C.; Shakin-Eshleman, S. H. Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosacchride acceptors. Biochem. J. 1997, 323, 415-419. Mellquist, J. L.; Kasturi, L.; Spitalnik, S. L.; Shakin-Eshleman, S. H. The amino acid following an Asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 1998, 37, 6833-6837). Further simulations on purely theoretical sequences suggested that influences of charged residues were a subset of multiple mechanisms in the determination of glycosylation site-occupancy.  相似文献   
340.
A series of erythromycin-A oxime ether as well as esters have been synthesized. Ether derivatives were synthesized through the epoxy ether intermediate of erythromycin-9-oxime, followed by opening of the epoxy linkage through various amines, whereas esters have been prepared through DCC mediated protocol. These derivatives have been evaluated for antibacterial activity and found to be as active as erythromycin-A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号