首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   22篇
  国内免费   1篇
  2023年   5篇
  2022年   12篇
  2021年   18篇
  2020年   8篇
  2019年   7篇
  2018年   14篇
  2017年   9篇
  2016年   15篇
  2015年   24篇
  2014年   16篇
  2013年   15篇
  2012年   31篇
  2011年   28篇
  2010年   16篇
  2009年   15篇
  2008年   15篇
  2007年   22篇
  2006年   10篇
  2005年   13篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1976年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
61.
Currently, a wide variety of both polyclonal and monoclonal antibodies are being routinely utilized to prevent and treat solid organ rejection. More commonly, these agents are also administered in order to delay introduction of calcineurin inhibitors, especially in patients with already compromised renal function. While these antibody therapies dramatically reduced the incidence of acute rejection episodes and improved both short and long-term graft survival, they are also associated with an increased incidence of opportunistic infections and neoplastic complications. Therefore, effective patient management must necessarily balance these risks against the potential benefits of the therapy.Key words: monoclonal, polyclonal, induction, transplants, kidney, lung, liver, heart, rejection, complications  相似文献   
62.
63.
64.
65.
In ion-coupled transport proteins, occupation of selective ion-binding sites is required to trigger conformational changes that lead to substrate translocation. Neurotransmitter transporters, targets of abused and therapeutic drugs, require Na(+) and Cl(-) for function. We recently proposed a chloride-binding site in these proteins not present in Cl(-)-independent prokaryotic homologues. Here we describe conversion of the Cl(-)-independent prokaryotic tryptophan transporter TnaT to a fully functional Cl(-)-dependent form by a single point mutation, D268S. Mutations in TnaT-D268S, in wild type TnaT and in serotonin transporter provide direct evidence for the involvement of each of the proposed residues in Cl(-) coordination. In both SERT and TnaT-D268S, Cl(-) and Na(+) mutually increased each other's potency, consistent with electrostatic interaction through adjacent binding sites. These studies establish the site where Cl(-) binds to trigger conformational change during neurotransmitter transport.  相似文献   
66.
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.  相似文献   
67.
Drug abuser patients (n = 104), age ranging from 19 to 42 years, were randomly recruited to investigate the serum levels of trace elements (Cu, Zn, Fe, and Mg), malondialdehyde (MDA), and immunoglobulin (IgG, IgA, and IgM) before and after clinical intervention. Control group also included 104 healthy individuals. Blood samples were analyzed for determining trace elements, MDA, and immunoglobulin using atomic absorption spectroscopy, Ultraviolet-Visible (UV-VIS) spectroscopy, and turbidimetry method, respectively. For serum level of Zn and Fe, the differences between the groups (before intervention, after intervention, and control) were not significant (p > 0.05). However, significant differences were found in serum copper levels between control group, drug abuser patients, and before and after intervention (p < 0.05). The concentration of Mg was found to be significantly higher (p = 0.007) in drug abuser patients than the controls, and after intervention, the level was restored to control value. A displacement of elemental homeostasis was observed in drug abuser patients compared to control, and it was improved after intervention. An increase in serum concentration of MDA was found in drug abuser patients compared to control subjects (p > 0.05) but was not statistically significant. After intervention, the concentration was restored to control value (p > 0.05). The serum concentrations of IgA and IgM were found to be significantly higher (p < 0.05) in drug abuser patients before intervention than the controls, and the level tended to be restored to control level after clinical intervention. Serum IgG level was found to be lower in drug abuser patients compared to controls and further declined significantly (p < 0.05) after intervention. These findings may suggest a possible imbalance in the levels of micronutrients, antioxidants, and immunoglobulin in drug abuser patients, which tend to be restored to control values after detoxification.  相似文献   
68.
Urease is an important enzyme both in agriculture and medicine research. Strategies based on urease inhibition is critically considered as the first line treatment of infections caused by urease producing bacteria. Since, urease possess agro-chemical and medicinal importance, thus, it is necessary to search for the novel compounds capable of inhibiting this enzyme. Several computational methods were employed to design novel and potent urease inhibitors in this work. First docking simulations of known compounds consists of a set of arylidine barbiturates (termed as reference) were performed on the Bacillus pasteurii (BP) urease. Subsequently, two fold strategies were used to design new compounds against urease. Stage 1 comprised of the energy minimization of enzyme-ligand complexes of reference compounds and the accurate prediction of the molecular mechanics generalized born (MMGB) interaction energies. In the second stage, new urease inhibitors were then designed by the substitution of different groups consecutively in the aryl ring of the thiobarbiturates and N, N-diethyl thiobarbiturates of the reference ligands.. The enzyme-ligand complexes with lowest interaction energies or energies close to the calculated interaction energies of the reference molecules, were selected for the consequent chemical manipulation. This was followed by the substitution of different groups on the 2 and 5 positions of the aryl ring. As a result, several new and potent diethyl thiobarbiturates were predicted as urease inhibitors. This approach reflects a logical progression for early stage drug discovery that can be exploited to successfully identify potential drug candidates.  相似文献   
69.
70.
While genetic screens have identified mutants of the model legume Lotus japonicus that can nodulate in the absence of rhizobia, the lack of a proteome map is a major hindrance to understanding the functional protein networks associated with this nodulation process. In this issue of Proteomics, Dam et al. (Proteomics 2014, 14, 230–240) developed 2D gel‐based reference maps of nodules and roots of Lotus and a spontaneous nodule formation mutant (snf1). Comparative proteomic analysis of roots and two developmental stages of nodules provide useful insights into tissue‐specific mechanisms underlying nodule organogenesis. Additionally, a comparison of interspecies nodule proteomes displays that overlapping and individual mechanisms are associated with legume nodulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号