首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   4篇
  2023年   4篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1990年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
31.
We ascertained three consanguineous Pakistani families (PKDF291, PKDF335 and PKDF793) segregating nonsyndromic recessive hearing loss. The hearing loss segregating in PKDF335 and PKDF793 is moderate to severe, whereas it is profound in PKDF291. The maximum two-point LOD scores are 3.01 (D19S1034), 3.85 (D19S894) and 3.71 (D19S894) for PKDF291, PKDF335 and PKDF793, respectively. Haplotype analyses of the three families define a 1.16 Mb region of overlap of the homozygous linkage intervals bounded by markers D19S216 (20.01 cM) and D19S1034 (20.75 cM). These results define a novel locus, DFNB72, on chromosome 19p13.3. There are at least 22 genes in the 1.16 Mb interval, including PTPRS, ZNRF4 and CAPS. We identified no pathogenic variants in the exons and flanking intronic sequences of these three genes in affected members of the DFNB72 families. DFNB72 is telomeric to DFNB68, the only other known deafness locus with statistically significant support for linkage to chromosome 19p.  相似文献   
32.
A defect in mitochondrial activity contributes to many diseases. We have shown that monolayers of the human colonic T84 epithelial cell line exposed to dinitrophenol (DNP, uncouples oxidative phosphorylation) and nonpathogenic Escherichia coli (E. coli) (strain HB101) display decreased barrier function. Here the impact of DNP on macrophage activity and the effect of TNF-alpha, DNP, and E. coli on epithelial permeability were assessed. DNP treatment of the human THP-1 macrophage cell line resulted in reduced ATP synthesis, and, although hyporesponsive to LPS, the metabolically stressed macrophages produced IL-1beta, IL-6, and TNF-alpha. Given the role of TNF-alpha in inflammatory bowel disease (IBD) and the association between increased permeability and IBD, recombinant TNF-alpha (10 ng/ml) was added to the DNP (0.1 mM) + E. coli (10(6) colony-forming units), and this resulted in a significantly greater loss of T84 epithelial barrier function than that elicited by DNP + E. coli. This increased epithelial permeability was not due to epithelial death, and the enhanced E. coli translocation was reduced by pharmacological inhibitors of NF-kappabeta signaling (pyrrolidine dithiocarbamate, NF-kappabeta essential modifier-binding peptide, BAY 11-7082, and the proteosome inhibitor, MG132). In contrast, the drop in transepithelial electrical resistance was unaffected by the inhibitors of NF-kappabeta. Thus, as an integrative model system, our findings support the induction of a positive feedback loop that can severely impair epithelial barrier function and, as such, could contribute to existing inflammation or trigger relapses in IBD. Thus metabolically stressed epithelia display increased permeability in the presence of viable nonpathogenic E. coli that is exaggerated by TNF-alpha released by activated immune cells, such as macrophages, that retain this ability even if they themselves are experiencing a degree of metabolic stress.  相似文献   
33.
Alpha‐1‐antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at amino acid 342 in the mature protein, resulting in the Z mutation of the alpha‐1‐antitrypsin gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes and monocytes, causing a toxic gain of function. Retained ZAAT is eliminated by ER‐associated degradation and autophagy. We hypothesized that alpha‐1‐antitrypsin (AAT)‐interacting proteins play critical roles in quality control of human AAT. Using co‐immunoprecipitation, we identified ERdj3, an ER‐resident Hsp40 family member, as a part of the AAT trafficking network. Depleting ERdj3 increased the rate of ZAAT degradation in hepatocytes by redirecting ZAAT to the ER calreticulin‐EDEM1 pathway, followed by autophagosome formation. In the Huh7.5 cell line, ZAAT ER clearance resulted from enhancing ERdj3‐mediated ZAAT degradation by silencing ERdj3 while simultaneously enhancing autophagy. In this context, ERdj3 suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD‐related liver disease. J. Cell. Biochem. 118: 3090–3101, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   
34.
The effects of incubation of yeast spheroplasts at elevated temperature (40°C) on a number of activities involved in protein biosynthesis have been examined in preparations obtained from wild-type cells (wt A364A) and a temperature-sensitive mutant (ts 7–45) derived from it. With wild-type cells, preincubation of spheroplasts at the elevated temperature had little or no effect on the following: (1) the ribosomal subunit-polysome pattern; (2) the translation of exogenous natural mRNA in postpolysomal extracts devoid of endogenous mRNA; (3) the translation of poly(U) in postpolysomal extracts; (4) the incorporation of methionine into 40 S preinitiation and 80 S initiation complexes; (5) the synthesis of Met-tRNA in postribosomal (cytosol) extracts; and (6) the formation of eIF-2·GTP·Met-tRNAf ternary complex in the cytosol. With temperature-sensitive spheroplasts that had not been preincubated at the elevated temperature, the concentration of free, native 40 S subunits appeared to be lower and that of 60 S subunits higher than in wild-type cells; translation of exogenous natural mRNA in postpolysomal extracts was somewhat lower than in wild-type preparations, but all of the other reactions and components measured were comparable to those in wild-type preparations. Preincubation of temperature-sensitive spheroplasts at 40°C resulted in: (1) a further decrease in the level of 40 S subunits; (2) disaggregation of polysomes; (3) loss of ability to translate natural mRNA but not poly(U); (4) decreased ability to form 40 S preinitiation intermediates; and (5) production of an activity, found in the cytosol, that inhibited Met-tRNA synthetase reversibly. The inhibitor had the characteristics of a protein and did not appear to be a proteinase, nuclease, or nucleotidase.  相似文献   
35.

Background

An effective therapy against envenoming should be a priority in view of the high number scorpion stings and snakebites. Serum therapy is still widely applied to treat the envenomation victims; however this approach suffers from several shortcomings. The employment of monoclonal antibodies might be an outcome as these molecules are at the core of a variety of applications from protein structure determination to cancer treatment. The progress of activities in the twilight zone between genetic and antibody engineering have led to the development of a unique class of antibody fragments. These molecules possess several benefits and lack many possible disadvantages over classical antibodies. Within recombinant antibody formats, nanobodies or single domain antigen binding fragments derived from heavy chain only antibodies in camelids occupy a privileged position.

Scope of review

In this paper we will briefly review the common methods of envenomation treatment and focus on details of various in vivo research activities that investigate the performance of recombinant, monoclonal nanobodies in venom neutralization.

Major conclusions

Nanobodies bind to their cognate target with high specificity and affinity, they can be produced in large quantities from microbial expression systems and are very robust even when challenged with harsh environmental conditions. Upon administering, they rapidly distribute throughout the body and seem to be well tolerated in humans posing low immunogenicity.

General significance

Scorpion and snake envenomation is a major issue in developing countries and nanobodies as a venom-neutralizing agent can be considered as a valuable and promising candidate in envenomation therapy.  相似文献   
36.
37.
AimsElevated levels of endogenous opioids play a pivotal role in several deleterious consequences of cholestasis. Renal dysfunction occurs in cholestasis but its exact mechanism is still unknown. In this study, we investigated the role of endogenous opioids in cholestasis induced nephrotoxicity.Main methodsThirty-five rats were divided into five groups. In groups 1 and 2 BDL rats received either daily subcutaneous 20 mg/kg of naltrexone or its vehicle, for 7 days after BDL. In groups 3 and 4, BDL or Sham rats received no injections. In group 5, normal rats received subcutaneous injections of 20 mg/kg/day of naltrexone for 7 days. At the 7th day, 24 h urine was collected to measure urinary N-acetyl-β-D-glucosaminidase (NAG) as an early marker of renal tubular injury. Kidney samples were then collected for light and electron microscopic studies.Key findingsBDL significantly increased NAG activity compared to sham groups. Naltrexone significantly reversed NAG activity to normal levels in BDL animals. Naltrexone treatment in BDL animals also significantly reversed ALT and AST to their normal levels. In light and electron microscopic studies, there were significant structural alterations in BDL samples, which were mostly prevented in naltrexone treated BDL animals.SignificanceSignificant changes in urinary NAG activity and renal morphology of cholestatic rats were reversed by naltrexone treatment. These results suggest a possible role for endogenous opioids in inducing cholestatic nephrotoxicity.  相似文献   
38.
The NKG2D receptor costimulates effector/memory CD8 T cells and is normally absent on CD4 T cells but can be induced by T cell antigen receptor complex stimulation and interleukin-15 (IL-15). Among its ligands are the human major histocompatibility complex class I-related MICA and MICB, which have a restricted tissue distribution but are frequently associated with malignancies and some microbial infections. Moreover, aberrant expression of MIC may promote autoimmune disease progression. Human T cell lymphotropic virus type I (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic inflammatory disease of the central nervous system that resembles multiple sclerosis. Disease progression involves production of IL-15 and its receptor through transactivation by the viral Tax regulator protein, an activated immune response state, and local cytokine production and T cell fratricide by Tax-specific cytotoxic T lymphocytes (CTL). This study shows that as with CD8 T cells, substantial proportions of HAM/TSP patient CD4 T cells are positive for NKG2D and that large numbers of T cells from both subsets express MIC, which can be transactivated by Tax independent of nuclear factor κB. Engagement of MIC by NKG2D promotes spontaneous HAM/TSP T cell proliferation and, apparently, CTL activities against HTLV-1-infected T cells. These results reveal a viral strategy that may exploit immune stimulatory mechanisms to negotiate a balance between promotion and limitation of infected host T cell expansions.  相似文献   
39.
40.
Inferior temporal (IT) cortex as the final stage of the ventral visual pathway is involved in visual object recognition. In our everyday life we need to recognize visual objects that are degraded by noise. Psychophysical studies have shown that the accuracy and speed of the object recognition decreases as the amount of visual noise increases. However, the neural representation of ambiguous visual objects and the underlying neural mechanisms of such changes in the behavior are not known. Here, by recording the neuronal spiking activity of macaque monkeys’ IT we explored the relationship between stimulus ambiguity and the IT neural activity. We found smaller amplitude, later onset, earlier offset and shorter duration of the response as visual ambiguity increased. All of these modulations were gradual and correlated with the level of stimulus ambiguity. We found that while category selectivity of IT neurons decreased with noise, it was preserved for a large extent of visual ambiguity. This noise tolerance for category selectivity in IT was lost at 60% noise level. Interestingly, while the response of the IT neurons to visual stimuli at 60% noise level was significantly larger than their baseline activity and full (100%) noise, it was not category selective anymore. The latter finding shows a neural representation that signals the presence of visual stimulus without signaling what it is. In general these findings, in the context of a drift diffusion model, explain the neural mechanisms of perceptual accuracy and speed changes in the process of recognizing ambiguous objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号