首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   16篇
  国内免费   1篇
  414篇
  2023年   5篇
  2022年   9篇
  2021年   38篇
  2020年   11篇
  2019年   15篇
  2018年   13篇
  2017年   8篇
  2016年   16篇
  2015年   20篇
  2014年   27篇
  2013年   46篇
  2012年   28篇
  2011年   21篇
  2010年   11篇
  2009年   11篇
  2008年   18篇
  2007年   16篇
  2006年   10篇
  2005年   9篇
  2004年   9篇
  2003年   12篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有414条查询结果,搜索用时 15 毫秒
101.
Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H+ conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l?1 (41.2-fold in 7 days) from glycerol and .39 g l?1 (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.  相似文献   
102.
Blood samples were collected and follicle diameters were determined daily beginning on Day 12 (Day 0 = ovulation) in 35 interovulatory intervals (IOIs) in heifers. A minor follicular wave with maximal diameter (6.0 ± 0.3 mm) on Day −4 was detected in six of seven IOIs that were scanned for follicles 4 mm or greater. The number of IOIs with a CV-identified minor FSH surge toward the end of the IOI was greater (P < 0.03) in two-wave IOIs (10/17) than in three-wave IOIs (4/18). The 17 two-wave IOIs were used for study of the temporal relationships among preovulatory follicle, FSH, LH, and estradiol. Daily growth rate of the preovulatory follicle was maximum on Days −11 to −7, minimum (P < 0.05) on Days −7 to −4, and increased (resurged, P < 0.05) on Days −4 to −3. A transient increase in FSH was maximum on mean Day −4, and the peak of a minor FSH surge occurred on Day −4.5 ± 0.2. Concentration of LH and estradiol increased between Days −5 and −4. Results demonstrated resurgence of the preovulatory follicle apparently for the first time in any species. Resurgence seemed more related temporally to the minor FSH surge than to the LH increase, but further study is needed. Results supported the novel hypotheses that a minor FSH surge near the end of the IOI is temporally associated with (1) the emergence of a minor follicular wave and (2) the resurgence in growth rate of the preovulatory follicle.  相似文献   
103.
104.
The “Bottom-up” approach for implementing nano/microstructure using biological self-assembled systems has been investigated with tremendous interest by many researchers in the field of medical diagnostics, material synthesis, and nano/microelectronics. As a result, the techniques for achieving these systems have been extensively explored in recent years. The developed or developing techniques are based on many interdisciplinary areas such as biology, chemistry, physics, electrical engineering, mechanical engineering, and so on. In this paper, we review the fundamentals behind the self-assembly concepts and describe the state of art in the biological and chemical self-assembled systems for the implementation of nano/microstructures. These structures described in the paper can be applied to the implementation of hybrid biosensors, biochip, novel bio-mimetic materials, and nano/microelectronic devices.  相似文献   
105.
Tissue typing has been reviewed in a series of 100 technically successful cadaveric-donor kidney grafts. The criterion of transplant failure was immunological rejection causing total loss of function within three months of operation.No significant correlation was observed between matching grade and graft failure due to early acute rejection. This is attributed to the failure to detect at least one “LA” or “4” antigen (as defined in our laboratory), representing a potential incompatibility, in 89% of the grafts, and in the remaining 11% to the lack of an available recipient with identical “LA” and “4” typing. Undetected antigens on the donor are usually incompatible, and probably these incompatibilities unfavourably influence early graft survival.If the results of cadaveric-donor renal transplantation are to equal those of transplantation from well-matched living related donors it will be necessary to type with sera which can recognize individually all HL-A antigens, including those not yet identified, and to create an international pool of over 1,000 potential recipients.  相似文献   
106.
Two autosomal recessive muscle diseases, limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are caused by mutations in the dysferlin gene. These mutations result in poor ability to repair cell membrane damage, which is suggested to be the cause for this disease. However, many patients who share clinical features with MM-type muscular dystrophy do not carry mutations in dysferlin gene. To understand the basis of MM that is not due to mutations in dysferlin gene, we analyzed cells from patients in one such family. In these patients, we found no defects in several potential candidates - annexin A2, caveolin-3, myoferlin and the MMD2 locus on chromosome 10p. Similar to dysferlinopathy, these cells also exhibit membrane repair defects and the severity of the defect correlated with severity of their disease. However, unlike dysferlinopathy, none of the conventional membrane repair pathways are defective in these patient cells. These results add to the existing evidence that cell membrane repair defect may be responsible for MM-type muscular dystrophy and indicate that a previously unsuspected genetic lesion that affects cell membrane repair pathway is responsible for the disease in the non-dysferlin MM patients.  相似文献   
107.
In addition to the characterized mechanisms responsible for many direct effects of plant growth promoting bacteria (PGPB) on plants, it has been suggested that a number of PGPB contain the enzyme ACC deaminase that catalyzes degradation of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, into α-ketobutyrate and ammonia. As part of an effort to obtain an ACC deaminase encoding gene from a collection of soil samples, only one bacterial isolate, Pseudomonas fluorescens FY32 was capable of growing on ACC as a sole source of nitrogen. The ACC deaminase gene was amplified from the above isolate by polymerase chain reaction (PCR) giving an expected DNA fragment, 1017 bp. Sequence analysis of the fragment showed that it was highly homologous (94% and 98% identities at nucleotide and amino acid levels, respectively) to the previously characterized acdS gene from Pseudomonas sp. 6G5. Furthermore, fusion of the ACC deaminase ORF with lacZ gene resulted in the expression of active enzyme in Escherichia coli. In addition, further analyses revealed that the acdS gene was plasmid-encoded so that a large plasmid (pFY32) with almost 50 kb in size was identified from this bacterium. Furthermore, transfer of pFY32 into E. coli DH5α proved its ACC deaminase activity. This result was in accordance with previous reports suggesting horizontal transfer of the acdS gene. However, it needs more investigation to identify whether this pFY32 plasmid has undergone lateral gene transfer during the evolutionary process.  相似文献   
108.
In the current study, α-Bi2O3 and β-Bi2O3 were synthesised using a one-step, novel, solid–solid combustion technique. The reaction rate was increased with the use of microwaves (molecular heating) compared to direct or indirect heating. A strong relationship was observed between the fuel, polymorphic structure, shape and optical properties of the synthesised Bi2O3. Photoluminescence studies reveal that two major visible emissions are observed for all samples. The two emissions are distinct with a broad peak in blue and a narrow peak in green. The intensity of the green characteristic emission depends strongly on the heating method used for synthesis and is more intense for microwave-synthesised samples.  相似文献   
109.
Raza  Qasim  Riaz  Awais  Bashir  Khurram  Sabar  Muhammad 《Plant molecular biology》2020,104(1-2):97-112
Plant Molecular Biology - By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be...  相似文献   
110.
Bashir  Faiza  Rehman  Ateeq Ur  Szabó  Milán  Vass  Imre 《Photosynthesis research》2021,149(1-2):93-105
Photosynthesis Research - Singlet oxygen (1O2) is an important damaging agent, which is produced during illumination by the interaction of the triplet excited state pigment molecules with molecular...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号