首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6952篇
  免费   467篇
  国内免费   12篇
  2023年   75篇
  2022年   254篇
  2021年   389篇
  2020年   150篇
  2019年   190篇
  2018年   285篇
  2017年   188篇
  2016年   270篇
  2015年   409篇
  2014年   391篇
  2013年   501篇
  2012年   501篇
  2011年   487篇
  2010年   295篇
  2009年   244篇
  2008年   295篇
  2007年   307篇
  2006年   243篇
  2005年   191篇
  2004年   187篇
  2003年   146篇
  2002年   147篇
  2001年   99篇
  2000年   78篇
  1999年   60篇
  1998年   41篇
  1997年   39篇
  1996年   35篇
  1995年   32篇
  1994年   26篇
  1993年   25篇
  1992年   66篇
  1991年   46篇
  1990年   57篇
  1989年   55篇
  1988年   42篇
  1987年   39篇
  1986年   38篇
  1985年   36篇
  1984年   38篇
  1983年   40篇
  1982年   39篇
  1981年   36篇
  1980年   46篇
  1979年   26篇
  1978年   34篇
  1977年   22篇
  1975年   20篇
  1974年   26篇
  1973年   27篇
排序方式: 共有7431条查询结果,搜索用时 15 毫秒
51.
Measurements of uptake rates, intracellular nitrogen pools, and other key intracellular constituents were made during exponential growth in Skeletonema costatum (Grev.) Cleve under varying pH levels. An understanding of the overall effects of extracellular pH on the above mentioned cellular parameters is crucial in order to ascertain the degree to which pH must be regulated and monitored in laboratory experiments with marine phytoplankton.It was found that uptake rates and intracellular pool sizes of NO?3 were directly influenced by the extracellular pH level, whereas, other cellular compounds remained relatively unchanged. Therefore, nitrogen uptake and intracellular nitrogen storage are dependent on key H+ and OH? ion transport mechanisms that are associated with phytoplankton metabolism. These findings reiterate the fact that investigators examining nitrogen uptake and assimilatory mechanisms in marine phytoplankton must be conscious of cellular H + and OH? fluxes that contribute to intracellular pH regulation and changes in extracellular pH levels, both of which interact to affect phytoplankton metabolic processes.  相似文献   
52.
Specific mixed lymphocyte reaction (MLR) responsiveness to allogeneic major histocompatibility complex (MHC), or minor lymphocyte-stimulating (Mls) determinants, was depleted in the peripheral blood lymphocytes (PBL) obtained from mice 24 to 48 hr after i.v. injection of 5 to 7.5 X 10(7) MHC or Mlsa-incompatible spleen cells, respectively. Results of cell mixture experiments suggest that the generation of suppressor cells was not the explanation for this specific reduction in MLR proliferation occurring with these PBL responder cells. To gain additional insight into parameters involved in the recognition of allodeterminants in vivo, experimental manipulations of the host environment and donor cell inoculum utilized in the negative selection procedure were employed. For example, removal of the spleen in the recipient animal, an anatomic site in which injected allogeneic cells and corresponding host antigen-reactive cells (ARC) are trapped, still permitted the specific depletion in murine PBL of host ARC for donor foreign MHC antigens. This finding may implicate other sites such as the liver where unprimed host alloreactive clones are trapped. In addition, irradiation of allogeneic donor cells significantly reduced their capacity to trap alloreactive T cell clones in vivo, whereas heat treatment of the donor cells completely eliminated this ability, even though the Ia determinants were still expressed, measured by flow cytometry. After the negative selection period, kinetic analysis of proliferation showed that 3, 4, or 5 days after injection of MHC-incompatible allogeneic spleen cells, the PBL of the recipient showed specific hyperresponsiveness to the MHC-haplotype of the donor cells. Interestingly, these primed PBL responder cells had the volume distribution of small resting cells; thoracic duct lymphocytes (TDL), positively selected by adoptive transfer of T cells to irradiated semiallogeneic recipients, are reported to be mainly blast cells. In contrast to the MLR hyperresponsiveness that results from priming with MHC-incompatible splenocytes, PBL, obtained at these later time points from mice primed with Mlsa-incompatible, H-2-compatible splenocytes, showed complete unresponsiveness in MLR to these Mlsa-bearing stimulator cells, as well as some nonspecific reduction in proliferation to MHC-incompatible stimulator cells regardless of their Mls genotype.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
53.
The probable effect of increasing levels of ammonium nitrogen on the growth, efficiency of nitrogen fixation, and main cellular constituents of Azotobacter vinelandii was studied under shaking and static culture conditions. The presence of NH4+-N up to 50 mgl-1 level has no harmful effect on the multiplication as well as the yield efficiency ratio of the tested organism. A. vinelandii was able to fix dinitrogen in the presence of NH4+-N when both nitrogen sources were available in the culturing medium. The efficiency of nitrogen fixation was affected by the initial presence of NH4+-N in the medium, it was quite low at the highest level. The crude protein efficiency ratio was correlated inversely with the initial NH4+-N concentration, whereas the total carbohydrate efficiency ratio as well as the total lipid efficiency ratio were positively correlated with the NH4+-N concentration. The presence of NH4+-N in the culturing medium has no essential influence on the qualitative composition of the amino acids in the Azotobacter cells.  相似文献   
54.
Structure of the ribosome-associated 5.8 S ribosomal RNA   总被引:3,自引:0,他引:3  
The structure of the 5.8 S ribosomal RNA in rat liver ribosomes was probed by comparing dimethyl sulfate-reactive sites in whole ribosomes, 60 S subunits, the 5.8 S-28 S rRNA complex and the free 5.8 S rRNA under conditions of salt and temperature that permit protein synthesis in vitro. Differences in reactive sites between the free and both the 28 S rRNA and 60 S subunit-associated 5.8 S rRNA show that significant conformational changes occur when the molecule interacts with its cognate 28 S rRNA and as the complex is further integrated into the ribosomal structure. These results indicate that, as previously suggested by phylogenetic comparisons of the secondary structure, only the "G + C-rich" stem may remain unaltered and a universal structure is probably present only in the whole ribosome or 60 S subunit. Further comparisons with the ribosome-associated molecule indicate that while the 5.8 S rRNA may be partly localized in the ribosomal interface, four cytidylic acid residues, C56, C100, C127 and C128, remain reactive even in whole ribosomes. In contrast, the cytidylic acid residues in the 5 S rRNA are not accessible in either the 60 S subunit or the intact ribosome. The nature of the structural rearrangements and potential sites of interaction with the 28 S rRNA and ribosomal proteins are discussed.  相似文献   
55.
A unique DR-related B cell differentiation antigen   总被引:2,自引:0,他引:2  
The Ia or class II molecules in both mouse and man are the basis for the genetic control of the immune response. In addition to DR, other class II antigens have been described in man. We describe a new human Ia antigen K19, recognized by three monoclonal antibodies (HK-9, HK-19, and HK-20). This antigen has the general biochemical characteristics of an Ia antigen but is different from a DR antigen. Further, this antigen is found only on mature B lymphocytes and not on monocytes and activated T cells. Thus, this antigen may represent a new Ia-like molecule that is preferentially expressed on mature B cells.  相似文献   
56.
In vivo interactions of acrylonitrile with macromolecules in rats   总被引:1,自引:0,他引:1  
The irreversible binding of [2,3-14C]acrylonitrile (VCN) to proteins, RNA and DNA of various tissues of male Sprague-Dawley rats after a single oral dose of 46.5 mg/kg (0.5 LD50) has been studied. Proteins were isolated by chloroform-isoamyl alcohol-phenol extraction. RNA and DNA were separated by hydroxyapatite chromatography. Binding of VCN to proteins was extensive and was time dependent. Radioactivity in nucleic acids was registered in the liver and the target organs, stomach and brain. DNA alkylation, which increased by time, was significantly higher in the target organs, brain and stomach (119 and 81 pmol/mg, respectively, at 24 h) than that in the liver. The covalent binding indices for the liver, stomach and brain at 24 h after dosing were, 5.9, 51.9 and 65.3, respectively. These results suggest that VCN is able to act as a multipotent carcinogen by alkylation of DNA in the extrahepatic target tissues, stomach and brain.  相似文献   
57.
The aim of this study was to provide information concerning the mechanism of exercise-induced stimulation of growth hormone (GH) release in human subjects. For this reason serum GH as well as some hemodynamic variables and blood concentrations of noradrenaline (NA), insulin (IRI), lactate (LA), glucose (BG), and free fatty acids (FFA) were determined in seven healthy male subjects exercising on a bicycle ergometer with arms or legs and running on a treadmill at equivalent oxygen consumption levels. Significantly greater increases in serum GH concentration accompanied arm exercises than those observed during the leg exercises. This was accompanied by greater increases in heart rate, blood pressure, and plasma NA and blood lactate concentrations. Serum IRI decreased during both leg exercises and did not change during the arm exercise. There were no differences in BG and plasma FFA concentrations between the three types of exercise. The role of humoral and neural signals responsible for the greater GH response to arm exercise is discussed. The findings are consistent with the hypothesis that neural afferent signals sent by muscle "metabolic receptors" participate in the activation of GH release during physical exercise. It seems likely that the stimulation of these chemoreceptors is more pronounced when smaller muscle groups are engaged at a given work load. However, a contribution of efferent impulses derived from the brain motor centres to the control system of GH secretion during exercise is also possible.  相似文献   
58.
59.
Water-soluble chromatin from rat submandibular gland nuclei was isolated, and had a DNA: RNA:protein ratio of 8:1:20. The spectral properties of this preparation were similar to those described for chromatins from other tissues. The rat submandibular gland chromatin possessed protein phosphokinase activity. It was able to incorporate 32P from [γ-32P]-ATP into chromatin proteins, and into dephospho-phosvitin. The chromatin-associated protein phosphokinase activity (measured with dephospho-phosvitin as substrate) required Mg2+, Na+ or K+ and dithiothreitol for optimal activity. A single injection of isoproterenol influenced the activity of this enzyme system, so that it was decreased at 2 h, showed a transient increase at 4 h, and a large increase at 10–16 h after the injection. This event appears to precede the increase in ribosomal RNA induced by Ipr [13]. By 48 h the chromatin-associated protein kinase returned to the normal control levels. These changes appeared to be commensurate with the corresponding alterations in the non-histone acidic protein complement of these chromatins. Actinomycin D or cycloheximide, when administered 30 min prior to isoproterenol, blocked the increase in chromatin-associated protein kinase at 4 as well as 10 h after the injection of isoproterenol. Injection of pilocarpine did not influence the chromatin-associated protein phosphokinase activity. Dichloroisoproterenol appeared to be antagonistic to the influence of isoproterenol in mediating changes in chromatin-associated protein kinase. The results suggest that the isoproterenol-induced increase in chromatin-bound protein phosphokinase which precedes the increase in RNA synthesis is related to the eventual onset of DNA synthesis in rat submandibular gland stimulated by isoproterenol. The chromatin-bound protein phosphokinase activity (or activities) may have a regulatory role on gene action, mediated through the control of phosphorylation of nuclear non-histone acidic proteins [26].  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号