首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   11篇
  国内免费   1篇
  147篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   8篇
  2019年   13篇
  2018年   10篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   15篇
  2012年   11篇
  2011年   10篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有147条查询结果,搜索用时 31 毫秒
21.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup.  相似文献   
22.
Using monolayers of intestinal Caco-2 cells, we reported that activation of NF-kappaB is required for oxidative disruption and that EGF protects against this injury but the mechanism remains unclear. Activation of the PKC-beta1 isoform is key to monolayer barrier integrity. We hypothesized that EGF-induced activation of PKC-beta1 prevents oxidant-induced activation of NF-kappaB and the consequences of NF-kappaB activation, F-actin, and barrier dysfunction. We used wild-type (WT) and transfected cells. The latter were transfected with varying levels of cDNA to overexpress or underexpress PKC-beta1. Cells were pretreated with EGF or PKC modulators +/- oxidant. Pretreatment with EGF protected monolayers by increasing native PKC-beta1 activity, decreasing IkappaBalpha phosphorylation/degradation, suppressing NF-kappaB activation (p50/p65 subunit nuclear translocation/activity), enhancing stable actin (increased F-actin-to-G-actin ratio), increasing stability of actin cytoskeleton, and reducing barrier hyperpermeability. Cells stably overexpressing PKC-beta1 were protected by low, previously nonprotective doses of EGF or modulators. In these clones, we found enhanced IkappaBalpha stabilization, NF-kappaB inactivation, actin stability, and barrier function. Low doses of the modulators led to increases in PKC-beta1 in the particulate fractions, indicating activation. Stably inhibiting endogenous PKC-beta1 substantially prevented all measures of EGF's protection against NF-kappaB activation. We conclude that EGF-mediated protection against oxidant disruption of the intestinal barrier function requires PKC-beta1 activation and NF-kappaB suppression. The molecular event underlying this unique effect of PKC-beta1 involves inhibition of phosphorylation and increases in stabilization of IkappaBalpha. The ability to inhibit the dynamics of NF-kappaB/IkappaBalpha and F-actin disassembly is a novel mechanism not previously attributed to the classic subfamily of PKC isoforms.  相似文献   
23.
24.
25.
26.
Using intestinal Caco-2 cells, we previously showed that assembly of cytoskeleton is required for monolayer barrier function, but the underlying mechanisms remain poorly understood. Because the -isoform of PKC is present in wild-type (WT) intestinal cells, we hypothesized that PKC- is crucial for changes in cytoskeletal and barrier dynamics. We have created the first multiple sets of gastrointestinal cell clones transfected with varying levels of cDNA to stably inhibit native PKC- (antisense, AS; dominant negative, DN) or to express its activity (sense). We studied transfected and WT Caco-2 cells. First, relative to WT cells, AS clones underexpressing PKC- showed monolayer injury as indicated by decreased native PKC- activity, reduced tubulin phosphorylation, increased tubulin disassembly (decreased polymerized and increased monomeric pools), reduced architectural integrity of microtubules, reduced stability of occludin, and increased barrier hyperpermeability. In these AS clones, PKC- was substantially reduced in the particulate fractions, indicating its inactivation. In WT cells, 82-kDa PKC- was constitutively active and coassociated with 50-kDa tubulin, forming an endogenous PKC-/tubulin complex. Second, DN transfection to inhibit the endogenous PKC- led to similar destabilizing effects on monolayers, including cytoskeletal hypophosphorylation, depolymerization, and instability as well as barrier disruption. Third, stable overexpression of PKC- led to a mostly cytosolic distribution of -isoform (<10% in particulate fractions), indicating its inactivation. In these sense clones, we also found disruption of occludin and microtubule assembly and increased barrier dysfunction. In conclusion, 1) PKC- isoform is required for changes in the cytoskeletal assembly and barrier permeability in intestinal monolayers, and 2) the molecular event underlying this novel biological effect of PKC- involves changes in phosphorylation and/or assembly of the subunit components of the cytoskeleton. The ability to alter the cytoskeletal and barrier dynamics is a unique function not previously attributed to PKC-. microtubules; tubulin; occludin; epithelial barrier permeability; protein kinase C isoform  相似文献   
27.
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year's time to complete the same task.  相似文献   
28.
Ephrins and Eph receptors are involved in the establishment of vertebrate tissue boundaries. The complexity of the system is puzzling, however in many instances, tissues express multiple ephrins and Ephs on both sides of the boundary, a situation that should in principle cause repulsion between cells within each tissue. Although co-expression of ephrins and Eph receptors is widespread in embryonic tissues, neurons, and cancer cells, it is still unresolved how the respective signals are integrated into a coherent output. We present a simple explanation for the confinement of repulsion to the tissue interface: Using the dorsal ectoderm–mesoderm boundary of the Xenopus embryo as a model, we identify selective functional interactions between ephrin–Eph pairs that are expressed in partial complementary patterns. The combined repulsive signals add up to be strongest across the boundary, where they reach sufficient intensity to trigger cell detachments. The process can be largely explained using a simple model based exclusively on relative ephrin and Eph concentrations and binding affinities. We generalize these findings for the ventral ectoderm–mesoderm boundary and the notochord boundary, both of which appear to function on the same principles. These results provide a paradigm for how developmental systems may integrate multiple cues to generate discrete local outcomes.  相似文献   
29.
Citrobacter rodentium is an attaching and effacing pathogen used as a murine model for enteropathogenic Escherichia coli. The mucus layers are a complex matrix of molecules, and mucus swelling, hydration and permeability are affected by many factors, including ion composition. Here, we used the C. rodentium model to investigate mucus dynamics during infection. By measuring the mucus layer thickness in tissue explants during infection, we demonstrated that the thickness changes dynamically during the course of infection and that its thickest stage coincides with the start of a decrease of bacterial density at day 14 after infection. Although quantitative PCR analysis demonstrated that mucin mRNA increases during early infection, the increased mucus layer thickness late in infection was not explained by increased mRNA levels. Proteomic analysis of mucus did not demonstrate the appearance of additional mucins, but revealed an increased number of proteins involved in defense responses. Ussing chamber-based electrical measurements demonstrated that ion secretion was dynamically altered during the infection phases. Furthermore, the bicarbonate ion channel Bestrophin-2 mRNA nominally increased, whereas the Cftr mRNA decreased during the late infection clearance phase. Microscopy of Muc2 immunostained tissues suggested that the inner striated mucus layer present in the healthy colon was scarce during the time point of most severe infection (10 days post infection), but then expanded, albeit with a less structured appearance, during the expulsion phase. Together with previously published literature, the data implies a model for clearance where a change in secretion allows reformation of the mucus layer, displacing the pathogen to the outer mucus layer, where it is then outcompeted by the returning commensal flora. In conclusion, mucus and ion secretion are dynamically altered during the C. rodentium infection cycle.  相似文献   
30.
Recent studies have suggested that extracellular matrix rigidity regulates cancer invasiveness, including the formation of cellular invadopodial protrusions; however, the relevant mechanical range is unclear. Here, we used a combined analysis of tissue-derived model basement membrane (BM) and stromal matrices and synthetic materials to understand how substrate rigidity regulates invadopodia. Urinary bladder matrix-BM (UBM-BM) was found to be a rigid material with elastic moduli of 3-8 MPa, as measured by atomic force microscopy and low-strain tensile testing. Stromal elastic moduli were ∼6-fold lower, indicating a more compliant material. Using synthetic substrates that span kPa–GPa moduli, we found a peak of invadopodia-associated extracellular matrix degradation centered around 30 kPa, which also corresponded to a peak in invadopodia/cell. Surprisingly, we observed another peak in invadopodia numbers at 2 GPa as well as gene expression changes that indicate cellular sensing of very high moduli. Based on the measured elastic moduli of model stroma and BM, we expected to find more invadopodia formation on the stroma, and this was verified on the stromal versus BM side of UBM-BM. These data suggest that cells can sense a wide range of rigidities, up into the GPa range. Furthermore, there is an optimal rigidity range for invadopodia activity that may be limited by BM rigidity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号