首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13424篇
  免费   813篇
  国内免费   7篇
  14244篇
  2023年   117篇
  2022年   135篇
  2021年   225篇
  2020年   206篇
  2019年   217篇
  2018年   325篇
  2017年   331篇
  2016年   474篇
  2015年   554篇
  2014年   630篇
  2013年   874篇
  2012年   984篇
  2011年   933篇
  2010年   578篇
  2009年   515篇
  2008年   696篇
  2007年   650篇
  2006年   650篇
  2005年   561篇
  2004年   550篇
  2003年   484篇
  2002年   460篇
  2001年   237篇
  2000年   184篇
  1999年   164篇
  1998年   95篇
  1997年   88篇
  1996年   66篇
  1995年   71篇
  1994年   63篇
  1993年   62篇
  1992年   109篇
  1991年   85篇
  1990年   103篇
  1989年   114篇
  1988年   96篇
  1987年   65篇
  1986年   88篇
  1985年   103篇
  1983年   63篇
  1982年   61篇
  1979年   92篇
  1978年   64篇
  1977年   59篇
  1974年   83篇
  1973年   78篇
  1970年   69篇
  1969年   65篇
  1968年   61篇
  1967年   57篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
This study aimed to elicit patient- and treatment-related factors that can potentially predict treatment adherence in adult ADHD. Subjects who were over 18 and received a diagnosis of ADHD were included in the study. Chart review data of 102 subjects regarding demographics, medications, comorbidities, concomitant medications and domains of functional impairment were collected, and predictors were assessed using a binominal logistical regression model. One hundred and two patients (78.4 % male) with a mean age of 28.8 (SD = 9.8, range = 18–55) years were enrolled in the study. Childhood diagnosis of ADHD, agents used for treatment (MPH or atomoxetine), individual domains of dysfunction and use of additional psychotropic drugs were not found to be related to treatment adherence. Patients with a university education and those referred for family history of ADHD were more likely to adhere to treatment (p = 0.05 and 0.03, respectively). On the other hand, reasons for referral other than ADHD were significantly more frequently related to non-adherence (p = 0.02). Treatment noncompliance remains a significant problem despite therapeutic effects of medications. Identification of predictors of non-adherence can lead to heightened awareness of special populations at risk. We have found that prior awareness on ADHD (via past history/media/friends) leading to self/clinician referral to rule out ADHD and pervasiveness of symptoms across functional domains led to better compliance in our sample. Future research with prospective design utilizing objective tools for adherence is required.  相似文献   
202.
203.
Phosphocreatine can be separated from creatine in superfused frog muscle by natural abundance13C-NMR, based on the difference in resonance frequency of their guanidino carbons. After taking into account the longitudinal relavation times and nuclear Overhauser enhancement factors, the integrated oak areas of the guanidino carbons could be used for determination of the phosphocreatine-to-creatine ratio in the muscle, the pH-dependence of the chemical shift of the C-2 carboon in the histtdine ring of carnosine was used for estimation of the intracellular pH in the intact muscle.  相似文献   
204.
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B(1) exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B(1) and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers.  相似文献   
205.
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.The extension of fatty acids to lengths greater than 28 carbons (C28) is an exceptional process in plant metabolism in that it requires unique biochemical machinery, and the elongation products are used for the synthesis of specialized plant metabolites. Derivatives of C30 to C34 fatty acids make up the bulk of plant cuticular wax, which coats all of a plant’s primary aerial surfaces. Cuticular wax serves as a barrier against transpirational water loss (Riederer and Schreiber, 2001) and protects the plant from both biotic (Eigenbrode, 1996) and abiotic (Grace and van Gardingen, 1996) stresses. C30 to C34 fatty acid-derived lipids are also components of the pollen coat, where they function in pollen hydration and germination on dry stigma (Elleman et al., 1992; Preuss et al., 1993).The core complex that elongates long-chain fatty acids (C16–C18) to very-long-chain fatty acids (VLCFAs; C20–C34) consists of four interacting proteins localized to the endoplasmic reticulum (ER). β-Keto-acyl-CoA synthases (KCSs), also known as condensing enzymes, catalyze the first reaction required for VLCFA elongation, condensing malonyl-CoA with an acyl-CoA (n) to produce a β-keto-acyl-CoA (n + 2). Condensation is both a specific and rate-limiting step in elongation (Millar and Kunst, 1997). Chain length specificity of KCSs is of particular importance because VLCFA length determines the downstream use of the fatty acid (for review, see Joubès et al., 2008; Haslam and Kunst, 2013a). There are two families of condensing enzymes in Arabidopsis (Arabidopsis thaliana). The ELONGATION-DEFECTIVE (ELO)-LIKE family is homologous to yeast (Saccharomyces cerevisiae) ELOs, and has putative functions in sphingolipid biosynthesis (Quist et al., 2009). Although our current understanding of plant ELO-LIKE physiological function and biochemical activity is limited, the mechanism of yeast Elo protein activity has been thoroughly investigated (Denic and Weissman, 2007). The FATTY ACID ELONGATION1 (FAE1)-type family is homologous to the first condensing enzyme identified in Arabidopsis, which is required for the synthesis of C20 to C22 VLCFAs in Arabidopsis oilseeds. Many of the 21 FAE1-type condensing enzymes of Arabidopsis have been characterized using reverse genetics and heterologous expression in yeast (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006; Tresch et al., 2012). This work has revealed the intriguing caveat that, although FAE1-type KCSs are involved in the synthesis of diverse downstream metabolites and use a broad range of acyl chain lengths, none are able to efficiently elongate VLCFAs beyond C28 (for review, see Haslam and Kunst, 2013a), which is essential for the production of cuticular wax components.Eceriferum2 (cer2) and glossy2 (gl2) mutants of Arabidopsis and Zea mays, respectively, are deficient in specific VLCFA-derived waxes longer than C28 (Bianchi et al., 1975; McNevin et al., 1993; Jenks et al., 1995). Both mutations were mapped to genes that do not resemble any component of the elongase complex (Tacke et al., 1995; Xia et al., 1996), but are homologous to the BAHD family of acyltransferases (St-Pierre et al., 1998). However, site-directed mutagenesis of conserved acyltransferase catalytic site amino acids in CER2 revealed that this motif is not required for CER2 function in cuticular wax synthesis (Haslam et al., 2012).CER6 is a condensing enzyme necessary for the accumulation of stem cuticular waxes in Arabidopsis, but when expressed in yeast, CER6 can only elongate VLCFAs to C28. When CER2 is expressed in yeast, it has no elongation activity. However, coexpression of CER2 and CER6 results in efficient production of C30 VLCFAs. Coexpression of CER2 with LfKCS45, a condensing enzyme from the crucifer Lesquerella fendleri that generates C28 and a small amount of C30 VLCFAs (Moon et al., 2004), does not alter product chain length (Haslam et al., 2012). Based on these observations, it was hypothesized that CER2 modifies the chain length specificity of the core elongase complex by interaction with specific KCS enzymes (Haslam et al., 2012).CER2 homologs are found in diverse flowering plant lineages, and many species have multiple CER2 homologs (Tuominen et al., 2011). A BLAST search of proteins from Arabidopsis identified two sequences with substantial similarity to CER2. NP_193120 is 36% identical to CER2, and is encoded by the gene At4g13840. We named this gene CER2-LIKE1 (also known as CER26) (Pascal et al., 2013). NP_566741 is 38% identical to CER2, and is encoded by the gene At3g23840. We named this gene CER2-LIKE2 (also named CER26-LIKE) (Pascal et al., 2013). Characterization of a cer2-like1 null mutant revealed a role for the CER2-LIKE1 protein in the elongation of leaf wax precursors beyond C30, analogous to the role of CER2 in C28 elongation in stems (Haslam et al., 2012; Pascal et al., 2013). cer2 cer2-like1 double mutants are deficient in the formation of wax components longer than C28 in both stems and leaves. As the cer2 single mutant has no leaf wax phenotype, the additive effect of these two mutations on leaf wax composition indicates that there is partial functional redundancy between the two genes.A comprehensive investigation of the biochemical and physiological functions of CER2-LIKE proteins is necessary. Beyond the value of knowing the specific roles of each homolog, such an investigation has potential to elucidate the nature of CER2-LIKE protein function. With this objective, we used our data to address the following questions: (1) Do CER2-LIKE proteins function with CER6 alone, or can they modify the activity of other FAE1-type condensing enzymes? (2) Do CER2-LIKE proteins have different effects on the substrate specificity of the same condensing enzyme, or is substrate specificity determined exclusively by the condensing enzyme? (3) What is the physiological relevance of the subtle changes in acyl lipid chain length that CER2-LIKE proteins induce?  相似文献   
206.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   
207.
This research focused on how adult female brown‐headed cowbirds, Molothrus ater, regulate social feedback on a group level to shape the development of male song. Specifically, females produce rapid wing movements in response to male song, termed ‘wing strokes,’ which have been shown to shape male song and predict song quality. These effects have been documented in captive dyads and triads, but not in more naturalistic flocks, where song development actually occurs. Here, we studied wing stroking in small seminatural flocks of differing female‐to‐male ratios. Despite differences in the number of females and their social selectivity, the same pattern of female feedback emerged in seven of eight flocks: One female produced the majority of wing strokes to male song, making her the primary wing stroker in her flock. Previous studies on large flocks have demonstrated females to facilitate male song improvisation and development if they exhibited higher social selectivity by approaching immature males less. Here, we found that primary wing strokers were indeed more socially selective than non‐primary wing strokers. This research is the first to document social stimulation being facilitated at the group level to ensure that more highly selective females deliver the most feedback.  相似文献   
208.
Mutations in the mouse ATRN gene, which encodes attractin, offer links between this protein and pigmentation, metabolism, immune status and neurodegeneration. However, the mechanisms of attractin action are not understood. The protein was first identified in humans in a circulating form in serum. A protease activity was postulated similar to the membrane-bound ectoenzyme DP4/CD26. In the last decade, both DP4/CD26 and attractin were controversially described to be the major source of human serum DP4 activity. We purified attractin from human plasma, and found that the DP4-like activity of the preparation shows nearly identical kinetic properties to that of recombinant human DP4. In contrast, the native electrophoretic behavior of this activity is clearly different from human and porcine DP4, but co-migrates with the protein band identified as attractin by Western blotting and N-terminal sequencing. Nevertheless, a DP4 impurity could be demonstrated in purified plasma attractin and the activity could be removed by ADA affinity chromatography, resulting in a homogenous attractin preparation without DP4 activity. These results are substantiated by expression of different attractin isoforms, in which no DP4 activity was found either. This indicates that the multidomain protein attractin acts as a receptor or adhesion protein rather than a protease.  相似文献   
209.
210.
Whole‐cell biocatalysis for C–H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW?1) under anaerobic conditions with nitrate as an electron acceptor and 2‐hydroxyquinoline as the sole product (further metabolization depends on O2). Hydroxylation‐derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase‐based whole‐cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号