首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   13篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   5篇
  2015年   10篇
  2014年   5篇
  2013年   15篇
  2012年   9篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   3篇
  1981年   1篇
  1978年   1篇
  1976年   5篇
  1975年   1篇
  1971年   1篇
排序方式: 共有147条查询结果,搜索用时 140 毫秒
121.
Mechanisms underlying species richness patterns remain a central yet controversial issue in biology. Climate has been regarded as a major determinant of species richness. However, the relative influences of different evolutionary processes, (i.e. niche conservatism, diversification rate and time for speciation) on species richness–climate relationships remain to be tested. Here, using newly compiled distribution maps for 11 422 woody plant species in eastern Eurasia, we estimated species richness patterns for all species and for families with tropical and temperate affinities separately, and explored the phylogenetic signals in species richness patterns of different families and their relationships with contemporary climate and climate change since the Last Glacial Maximum (LGM). We further compared the effects of niche conservatism (represented by contemporary-ancestral climatic niches differences), diversification rate and time for speciation (represented by family age) on variation in the slopes of species richness–climate relationships. We found that winter coldness was the best predictor for species richness patterns of most tropical families while Quaternary climate change was the best predictor for those of most temperate families. Species richness patterns of closely-related families were more similar than those of distantly-related families within eudicots, and significant phylogenetic signals characterized the slopes of species richness–climate relationships across all angiosperm families. Contemporary-ancestral climatic niche differences dominated variation in the relationships between family-level species richness and most climate variables. Our results indicate significant phylogenetic conservatism in family-level species richness patterns and their relationships with contemporary climate within eudicots. These findings shed light on the mechanisms underlying large-scale species richness patterns and suggest that ancestral climatic niche may influence the evolution of species richness–climate relationships in plants through niche conservatism.  相似文献   
122.
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band’s magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.  相似文献   
123.
It is not unusual to find common molecules among parasites of different species, genera, or phyla. When those molecules are antigenic, they may be used for developing drugs or vaccines that simultaneously target different species or genera of parasite. In the present study, we used a proteomic-based approach to identify proteins that are common to adult Fasciola hepatica and Schistosoma mansoni. Whole-worm extracts from each parasite were separated by 2-dimensional electrophoresis (2-DE), and digital images of both proteomes were superimposed using imaging software to identify proteins with identical isoelectric points and molecular weights. Protein identities were determined by mass spectrometry. Imaging and immunoblot analyses identified 28 immunoreactive proteins that are common to both parasites. Among these molecules are antioxidant proteins (thioredoxin and glutathione-S-transferase), glycolytic enzymes (glyceraldehyde 6-phosphate dehydrogenase and enolase), proteolytic enzymes (cathepsin-L and -D), inhibitors (Kunitz-type, Stefin-1), proteins with chaperone activity (heat shock protein 70 and fatty acid-binding protein), and structural proteins (calcium-binding protein, actin, and myosin). Some of the identified proteins could be used to develop drugs and vaccines against fascioliasis and schistosomiasis.  相似文献   
124.
Far from being a simple sensor, the retina actively participates in processing visual signals. One of the best understood aspects of this processing is the detection of motion direction. Direction-selective (DS) retinal circuits include several subtypes of ganglion cells (GCs) and inhibitory interneurons, such as starburst amacrine cells (SACs). Recent studies demonstrated a surprising complexity in the arrangement of synapses in the DS circuit, i.e. between SACs and DS ganglion cells. Thus, to fully understand retinal DS mechanisms, detailed knowledge of all synaptic elements involved, particularly the nature and localization of neurotransmitter receptors, is needed. Since inhibition from SACs onto DSGCs is crucial for generating retinal direction selectivity, we investigate here the nature of the GABA receptors mediating this interaction. We found that in the inner plexiform layer (IPL) of mouse and rabbit retina, GABA(A) receptor subunit α2 (GABA(A)R α2) aggregated in synaptic clusters along two bands overlapping the dendritic plexuses of both ON and OFF SACs. On distal dendrites of individually labeled SACs in rabbit, GABA(A)R α2 was aligned with the majority of varicosities, the cell's output structures, and found postsynaptically on DSGC dendrites, both in the ON and OFF portion of the IPL. In GABA(A)R α2 knock-out (KO) mice, light responses of retinal GCs recorded with two-photon calcium imaging revealed a significant impairment of DS responses compared to their wild-type littermates. We observed a dramatic drop in the proportion of cells exhibiting DS phenotype in both the ON and ON-OFF populations, which strongly supports our anatomical findings that α2-containing GABA(A)Rs are critical for mediating retinal DS inhibition. Our study reveals for the first time, to the best of our knowledge, the precise functional localization of a specific receptor subunit in the retinal DS circuit.  相似文献   
125.
Deterioration of raw materials of six medicinal plants viz. Terminalia arjuna, Acorus calamus, Rauvolfia serpentina, Holarrhena antidysenterica, Withania somnifera and Boerhaavia diffusa was examined. Some of the contaminated raw materials were found to be deteriorated by toxigenic strains of Aspergillus flavus and contain aflatoxin B1 (41.0–95.4 μg kg−1) which is above the permissible limit. Essential oil of Cymbopogon flexuosus and its components was found efficient in checking fungal growth and aflatoxin production. C. flexuosus essential oil absolutely inhibited the growth of A. flavus and aflatoxin B1 production at 1.3 μl ml−1 and 1.0 μl ml−1 respectively. The individual oil components were more efficacious than the Cymbopogon oil as such which emphasizes masking of their efficacy when combined together. Eugenol exhibited potent antifungal and aflatoxin inhibitory activity at 0.3 μl ml−1 and 0.1 μl ml−1 respectively. Eugenol was found superior over some prevalent synthetic antimicrobials and exhibited broad fungitoxic spectrum against some biodeteriorating moulds. Prospects of exploitation of the oil and its components as acceptable plant based antimicrobials in qualitative as well as quantitative control of biodeterioration of herbal raw materials have been discussed.  相似文献   
126.
The parasitic waspBracon hebetor Say paralyses its host, the larvae of the rice mothCorcyra cephalonica Staint, before oviposition. The effect of injected venom on the activity of cholinesterase was studied. The ChE activity of the paralysed larvae showed a partial inhibition of about 40% than that of the normal larvae. Such inhibition in ChE activity interferes with the synaptic transmission and/or may result in neuromuscular block causing the observed paralysis.  相似文献   
127.
During the mid-diapause period of the female tick Argas arboreus, nerve ganglion (G) extract (GE) from nondiapause (ND) females injected into diapause (D) female haemocoel after feeding, but not before feeding, terminated diapause in 50% of the ticks. ND haemolymph (H) failed to terminate diapause. Reciprocal injections of D GE, and H induced diapause in most ND females. During the late diapause season, ND GE, and H terminated diapause in D females and reciprocal injections of D GE, and H failed to induce diapause in ND females. The results suggest that in A. arboreus the facultative diapause results from gonadotropic hormone (GTH) deficiency in the presence of a diapause inducing factor (DIF). We suggest that the DIF is formed under the influence of short photoperiod in unfed females. The DIF interferes with normal release of the GTH formed in ganglion after feeding and also with the effect of GTH in the H by direct inhibition and/or by preventing the target organs (ovary and/or gut cells) from responding to GTH. The DIF is degraded slowly during short photoperiod and rapidly during long photoperiod.  相似文献   
128.
Three spore-δ-endotoxin preparations from Bacillus thuringiensis vars. kurstaki and entomocidus including a commercial biological insecticide, Thuricide, were studied with respect to their biological interactions with the lepidopterous cotton pests, Spodoptera littoralis, Spodoptera exigua, and Heliothis armigera. The biological effects of sublethal doses and the length of exposure time to low endotoxin concentrations were assessed during and after removal of toxin from the diet. Retardation in larval development, reduction in egg production of the moths, and fertility of the egg were observed together with significant reduction in pupal weight and appearance of deformities in both pupae and moth populations. The influence of exposure to sublethal toxin concentrations was also manifested in term of decreasing the adult emergence, fecundity reduction, and prolonging the generation period. In the exposed insects, the precentage of larvae that survived and succeeded to pupate increased with the decrease in the toxin concentration and with the decrease in exposure time. The reduction of the pupal weight significantly increased with the increase in either toxin concentration or the duration of exposure. The longevity of the moths was not affected by larval treatment and the data showed no clear correlation with the concentration and time of larval exposure to the toxin.  相似文献   
129.
A field experiment was conducted to assess the response to inoculation with rhizobia in a clay loam soil of the Nile Delta using faba bean (Vicia faba) for two successive winter seasons (1985/6 and 1986/7). Three selected strains of Rhizobium leguminosarum, TAL 634, NRC 65 and TAL 1400, were used singly or in combination as peat-based inocula in 1985/6 winter season. Strain TAL 1400 was replaced by strain F9 in the 1986/7 winter season. A significant seed yield response was obtained only with strain TAL 1400, in the 1985/6 season. In the 1986/7 season, no significant yield response was observed with any of the strains. The serotyping of nodules collected in the 1985/6 season showed that strain TAL 1400 was more competitive than either the indigenous rhizobia or the two inoculant strains. However, the majority of nodules formed in the 1986/7 season were formed from strains other than the inoculant ones.  相似文献   
130.

Gamma-aminobutyric acid (GABA), a non-proteinaceous amino acid, is reported in prokaryotes and eukaryotes, since ancient times. However, it has gained attention in the present time because of its rapid accumulation during stressed conditions in plants as well as in the cyanobacteria. In plants, it regulates the number of physiological processes such as pollen tube growth, root growth, TCA cycle, N2-metabolism, and osmoregulation. Several biotic and abiotic stresses prevail in the environment, which lead to enhanced accumulation of reactive oxygen species (ROS) thus causing oxidative damage. However, a rapid increase in the accumulation of GABA during stress in various plant forms like bacteria, cyanobacteria, fungi, and plants indicates its putative role in stress regulation and acclimation. This review summarizes the biosynthesis of GABA, its role in abiotic stress tolerance, and its crosstalk with ROS, nitric oxide, Ca+2 ions, phytohormones, and polyamines in stress acclimation.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号