首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   7篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1960年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
11.
The synthetic peptide TPLVTLFK corresponding to the sequence 12–19 of β‐endorphin (referred to as octarphin) was found to bind to high‐affinity naloxone‐insensitive binding sites on membranes isolated from the rat brain cortex (Kd = 2.6 ± 0.2 nM ). The binding specificity study revealed that these binding sites were insensitive not only to naloxone but also to α‐endorphin, γ‐endorphin, [Met5]enkephalin, and [Leu5]enkephalin, as well. The [3H]octarphin specific binding with brain membranes was inhibited by unlabeled β‐endorphin (Ki = 2.4 ± 0.2 nM ) and a selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin SLTCLVKGFY (Ki = 2.9 ± 0.2 nM ). At the same time, unlabeled octarphin completely (by 100%) inhibited the specific binding of [3H]immunorphin with membranes (Ki = 2.8 ± 0.2 nM ). Thus, octarphin binds with a high affinity and specificity to nonopioid receptor of β‐endorphin on rat brain cortex membranes. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
12.
beta-Endorphin-like decapeptide immunorphin (SLTCLVKGFY), a selective agonist of non-opioid beta-endorphin receptor, was labeled with tritium to specific activity of 24 Ci/mmol. It was used for the detection and characterization of non-opioid beta-endorphin receptors on rat adrenal cortex membranes (Kd1 = 39.6 +/- 2.0 nM, Bmax1 = 40.7 +/- 2.3 pmol/mg protein; Kd2 = 0.25 +/- 0.01 micro M, Bmax2 = 187.8 +/- 9.4 pmol/mg protein). beta-Endorphin was found to inhibit the [3H]immunorphin specific binding to membranes (Ki = 70.0 +/- 9.2 nM); naloxone, [Met5]enkephalin, and alpha- and gamma-endorphins tested in parallel were inactive. Immunorphin at concentrations of 10(-9)-10(-6) M was found to inhibit the adenylate cyclase activity in adrenocortical membranes, while intramuscular injection of immunorphin at doses of 10-100 micro g/kg was found to reduce the secretion of 11-oxycorticosteroids from the adrenals to the bloodstream.  相似文献   
13.
We synthesized linear and cyclic pentapeptides corresponding to the sequence 369-373 of human immunoglobulin G heavy chain—VKGFY (referred to as pentarphin and cyclopentarphin, respectively). The effect of pentarphin and cyclopentarphin on phagocytosis of Salmonella typhimurium virulent 415 strain bacteria by mouse peritoneal macrophages in vitro was studied. Control experiments showed that macrophages actively captured these bacteria, but did not digest them: the captured microbes were viable and continued to proliferate inside the phagocytes; within 12 h all macrophage monolayer was destroyed (incomplete phagocytosis). If 1 nM pentarphin or cyclopentarphin was added to the cultivation medium, macrophage bactericidal activity was significantly increased and they digested all captured microorganisms within 6 h (complete phagocytosis). To study the receptor binding properties of pentarphin and cyclopentarphin we prepared 125I-labeled pentarphin (179 Ci/mmol specific activity). The binding of 125I-labeled pentarphin to mouse peritoneal macrophages was highaffinity (K d = 3.6 ± 0.3 nM) and saturable. Studies on binding specificity revealed that this binding was insensitive to naloxone and [Met5]enkephalin, but completely inhibited by unlabeled cyclopentarphin (K i = 2.6 ± 0.3 nM), immunorphin (K i = 3.2 ± 0.3 nM), and -endorphin (K i = 2.8 ± 0.2 nM). Thus, the effects of pentarphin and cyclopentarphin on macrophages are mediated by naloxone-insensitive receptors common for pentarphin, cyclopentarphin, immunorphin, and -endorphin.  相似文献   
14.
The synthetic decapeptide H-SLTCLVKGFY-OH (termed immunorphin) corresponding to the sequence 364–373 of the CH3 domain of human immunoglobulin G heavy chain was found to compete with [125I]β-endorphin for high-affinity receptors on T lymphocytes from the blood of healthy donors (Ki = 0.6 nM). Besides immunorphin, its synthetic fragments H-Val-Lys-Gly-Phe-Tyr-OH (Ki = 15 nM), H-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 8.0 nM), H-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 3.4 nM), H-Thr-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 2.2 nM), H-Leu-Thr-Cys-Leu-Val-Lys-Gly-Phe-Tyr-OH (Ki = 1.0 nM) possessed the ability to inhibit specific binding of [125I]β-endorphin to T lymphocytes. Tests of the specificity of the receptors revealed that they are not sensitive to naloxone and Met-enkephalin, i.e. they are not opioid receptors. Kd values characterizing the specific binding of 125I- labeled immunorphin and its fragment H-Val-Lys-Gly-Phe-Tyr-OH to the receptors have been determined to be 7.4 nM and 36.3 nM, respectively.  相似文献   
15.
Characteristics of Non-opioid β-Endorphin Receptor   总被引:4,自引:0,他引:4  
Tritium-labeled selective agonist of non-opioid beta-endorphin receptor, the decapeptide immunorphine ([3H]SLTCLVKGFY) with specific activity of 24 Ci/mmol has been prepared. By its use, non-opioid beta-endorphin receptors were revealed and characterized on mouse peritoneal macrophages and rat myocardium, spleen, adrenal, and brain membranes. The non-opioid beta-endorphin receptor of macrophages has in addition to immunorphine (Kd of the [3H]immunorphine-receptor complex was 2.4 +/- 0.1 nM) and beta-endorphin (Ki of the [3H]immunorphine specific binding was 2.9 +/- 0.2 nM) a high affinity for Fc-fragment of human IgG1, pentarphine (VKGFY), cyclopentarphine [cyclo(VKGFY)], and [Pro3]pentarphine (VKPFY) (Ki values were 0.0060 +/- 0.0004, 2.7 +/- 0.2, 2.6 +/- 0.2, and 2.8 +/- 0.2 nM, respectively) and is insensitive to naloxone and [Met5]enkephalin (Ki > 100 microM). Treatment of macrophages with trypsin resulted in the loss of their ability for the specific binding of [3H]immunorphine. Values of the specific binding of 8.4 nM [3H]immunorphine to rat adrenal, spleen, myocardium, and brain membranes were determined to be 1146.0 +/- 44.7, 698.6 +/- 28.1, 279.1 +/- 15.4, and 172.2 +/- 1.8 fmol/mg protein, respectively. Unlabeled beta-endorphin, pentarphine, [Pro3]pentarphine, cyclopentarphine, cyclodipentarphine [cyclo(VKGFYVKGFY)], and Fc-fragment of IgG1 inhibited the binding of [3H]immunorphine to membranes from these organs. No specific binding of [3H]immunorphine to rat liver, lung, kidney, and intestine membranes was found.  相似文献   
16.
17.
A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name ‘soldier flies’, occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 °C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.  相似文献   
18.
The synthetic peptide octarphin (TPLVTLFK, fragment 12–19 of β-endorphin), a selective agonist of nonopioid β-endorphin receptor, was prepared with specific activity 28 Ci/mmol. The binding of [3H]octarphin to T and B lymphocytes isolated from the blood of donors was studied. It was found that [3H]octarphin binds both to T and B cells with high affinity: K d = 3.0 ± 0.2 and 3.2 ± 0.3 nM, respectively. The specific binding of [3H]octarphin to T and B lymphocytes was competitively inhibited by unlabeled β-endorphin (K i = 1.9 ± 0.2 and 2.2 ± 0.3 nM, respectively) and was not inhibited by unlabeled naloxone, [Met5]enkephalin, [Leu5]enkephalin, α-endorphin, and γ-endorphin. Thus, T and B lymphocytes of human blood possess a nonopioid β-endorphin receptor whose binding is provided by the fragment 12–19 (the octarphin sequence).  相似文献   
19.
This review presents the generalized literature data and the results of our own research of the nonopioid effect of β-endorphin, an opioid neuropeptide interacting not only with opioid but also with nonopioid (insensitive to the opioid antagonist naloxone) receptors. The roles of the hormone and its receptors in regulation of the immune, nervous, and endocrine systems are discussed. The effect of neuromediator on the immune system mediated by both opioid and nonopioid receptors is considered in detail. The data on distribution and function of the nonopioid β-endorphin receptor in human and animal organisms are presented. All available data on the characteristics of the nonopioid β-endorphin receptor obtained by means of radioligand analysis are given. The discussed information is supposed to extend our conceptions of the role of β-endorphin in mammals and to be of extensive use in medicine and pharmacology.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号