首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   23篇
  211篇
  2023年   2篇
  2022年   11篇
  2021年   8篇
  2020年   16篇
  2019年   15篇
  2018年   12篇
  2017年   11篇
  2016年   10篇
  2015年   12篇
  2014年   12篇
  2013年   11篇
  2012年   16篇
  2011年   18篇
  2010年   10篇
  2009年   2篇
  2008年   4篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  1998年   1篇
排序方式: 共有211条查询结果,搜索用时 0 毫秒
71.
72.
The Siamese fighting fish (Betta splendens) is well known as an aggressive fish with unique spawning and parental care behavior. During reproduction, male fish construct a bubble nest, court females, protect the brood, and defend the territory through aggressive displays. Aggression in male Siamese fighting fish has long been the subject of investigation; however, the kinematics of aggression during contests have been largely overlooked. Here we investigated how nest-holding, male Siamese fighting fish use two different types of displays, gill flaring and fin spreading, towards intruders during various reproductive phases; before (BB) and after bubble nest building, and after spawning (AS), and hatching (AH). Males were more aggressive towards male than female intruders and the level of aggression changed significantly between reproductive phases. Gill flaring, the more energetically costly display, was the dominant initial display towards male and female intruders in BB, AS, AH phases. However, defending males switched to fin spreading after prolonged exposure to intruders. The results suggest that Siamese fighting fish use gill flaring as an acute response in order to defend their territory; this response may be replaced by fin spreading as a chronic response, probably to reduce the energetic costs during the contest.  相似文献   
73.
74.
The interaction of a novel macrocyclic copper(II) complex, ([CuL(ClO4)2] that L is 1,3,6,10,12,15-hexaazatricyclo[13.3.1.16,10]eicosane) with calf thymus DNA (ct-DNA) was investigated by various physicochemical techniques and molecular docking at simulated physiological conditions (pH = 7.4). The absorption spectra of the Cu(II) complex with ct-DNA showed a marked hyperchroism with 10 nm blue shift. The intrinsic binding constant (Kb) was determined as 1.25 × 104 M?1, which is more in keeping with the groove binding with DNA. Furthermore, competitive fluorimetric studies with Hoechst33258 have shown that Cu(II) complex exhibits the ability to displace the ct-DNA-bound Hoechst33258 indicating that it binds to ct-DNA in strong competition with Hoechst33258 for the groove binding. Also, no change in the relative viscosity of ct-DNA and fluorescence intensity of ct-DNA-MB complex in the present of Cu(II) complex is another evidence to groove binding. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the binding reaction. The experimental results were in agreement with the results obtained via molecular docking study.  相似文献   
75.
In the present study, the interaction of human serum albumin (HSA) with some cardiovascular drugs (CARs) under physiological conditions was investigated via the fluorescence spectroscopic and Fourier transform infrared spectroscopy. The CAR included Captopril, Timolol, Propranolol, Atenolol, and Amiodarone. Cardiovascular drugs can effectively quench the endogenous fluorescence of HSA by static quenching mechanism. The fluorescence quenching of HSA is mainly caused by complex formation of HSA with CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results showed that CAR strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and nonradiation energy transfer happened within molecules. Fourier transform infrared spectroscopy absorption studies showed that the secondary structure was changed according to the interaction of HSA and CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results obtained herein will be of biological significance in pharmacology and clinical medicines.  相似文献   
76.
77.
The ontogeny of bone marrow and its stromal compartment, which is generated from skeletal stem/progenitor cells, was investigated in vivo and ex vivo in mice expressing constitutively active parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrP; caPPR) under the control of the 2.3-kb bone-specific mouse Col1A1 promoter/enhancer. The transgene promoted increased bone formation within prospective marrow space, but delayed the transition from bone to bone marrow during growth, the formation of marrow cavities, and the appearance of stromal cell types such as marrow adipocytes and cells supporting hematopoiesis. This phenotype resolved spontaneously over time, leading to the establishment of marrow containing a greatly reduced number of clonogenic stromal cells. Proliferative osteoprogenitors, but not multipotent skeletal stem cells (mesenchymal stem cells), capable of generating a complete heterotopic bone organ upon in vivo transplantation were assayable in the bone marrow of caPPR mice. Thus, PTH/PTHrP signaling is a major regulator of the ontogeny of the bone marrow and its stromal tissue, and of the skeletal stem cell compartment.  相似文献   
78.
Glycolysis in Trypanosoma brucei was modeled using a reaction transport simulator and tested for possible complex dynamics. The glycolytic model is multi-compartmentalized and accounts for the exchange of metabolites between the glycosomes, cytosol, mitochondrion and the host medium. The model is used to examine the effects of a range of culture medium concentrations of oxygen on the glycolysis of T. brucei. Our results are in good agreement with steady-state experiments. We also find that under aerobic conditions, increasing the activity of glycerol-3-phosphate dehydrogenase induces complex dynamics in the system. We report the presence of three distinct types of these dynamics. Varying the oxygen concentration in the medium can induce the transition between these dynamics.  相似文献   
79.
Choi WT  Tian S  Dong CZ  Kumar S  Liu D  Madani N  An J  Sodroski JG  Huang Z 《Journal of virology》2005,79(24):15398-15404
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did not play a role in either SDF-1alpha binding or signaling. These results provided direct experimental evidence for the distinct functional sites on CXCR4 for HIV-1 and the normal ligand SDF-1alpha. To further understand the CXCR4-ligand interaction and to develop new CXCR4 inhibitors to block HIV-1 entry, we have recently generated a new family of unnatural chemokines, termed synthetically and modularly modified (SMM) chemokines, derived from the native sequence of SDF-1alpha or viral macrophage inflammatory protein II (vMIP-II). These SMM chemokines contain various de novo-designed sequence replacements and substitutions by d-amino acids and display more enhanced CXCR4 selectivity, binding affinities, and/or anti-HIV activities than natural chemokines. Using these novel CXCR4-targeting SMM chemokines as receptor probes, we conducted ligand binding site mapping experiments on a panel of site-directed mutants of CXCR4. Here, we provide the first experimental evidence demonstrating that SMM chemokines interact with many residues on CXCR4 TM and extracellular domains that are important for HIV-1 entry, but not SDF-1alpha binding or signaling. The preferential overlapping in the CXCR4 binding residues of SMM chemokines with HIV-1 over SDF-1alpha illustrates a mechanism for the potent HIV-1 inhibition by these SMM chemokines. The discovery of distinct functional sites or conformational states influenced by these receptor sites mediating different functions of the natural ligand versus the viral or synthetic ligands has important implications for drug discovery, since the sites shared by SMM chemokines and HIV-1 but not by SDF-1alpha can be targeted for the development of selective HIV-1 inhibitors devoid of interference with normal SDF-1alpha function.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号