首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   29篇
  2023年   3篇
  2022年   11篇
  2021年   22篇
  2020年   20篇
  2019年   24篇
  2018年   15篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   19篇
  2012年   28篇
  2011年   23篇
  2010年   15篇
  2009年   7篇
  2008年   13篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
51.
52.
53.

Brugada syndrome (BrS) is a rare hereditary arrhythmia syndrome that increases an individual’s risk for sudden cardiac death (SCD) due to ventricular fibrillation. This disorder is regarded as a notable cause of death in individuals aged less than 40 years, responsible for up to 40% of sudden deaths in cases without structural heart disease, and is reported to be an endemic in Asian countries. Mutations in SCN5A are found in approximately 30% of patients with Brugada syndrome. This study aimed to investigate mutations in the SCN5A gene in a group of Iranian Brugada syndrome patients. Nine probands (n = 9, male, mean age = 39) diagnosed with Brugada syndrome were enrolled in this study. Exon 2 to 29 were amplified by PCR and subjected to direct sequencing. Eight in silico prediction tools were used to anticipate the effects of non-synonymous variants. Seven known polymorphisms and 2 previously reported disease-causing mutations, including H558R and G1406R, were found in the studied cases. Twenty novel variants were identified: 15 missense, 2 frameshift, 2 synonymous, and one nonsense variants. In silico tools predicted 11 non-synonymous variants to have damaging effects, whereas frameshift and nonsense variants were considered inherently pathogenic. The novel variants identified in this study, alongside previously reported mutations, are highly likely to be the cause of the Brugada syndrome phenotype observed in the patient group. Further analysis is required to understand the physiological effects caused by these variants.

  相似文献   
54.
55.
In the present study, the interaction of human serum albumin (HSA) with some cardiovascular drugs (CARs) under physiological conditions was investigated via the fluorescence spectroscopic and Fourier transform infrared spectroscopy. The CAR included Captopril, Timolol, Propranolol, Atenolol, and Amiodarone. Cardiovascular drugs can effectively quench the endogenous fluorescence of HSA by static quenching mechanism. The fluorescence quenching of HSA is mainly caused by complex formation of HSA with CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results showed that CAR strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and nonradiation energy transfer happened within molecules. Fourier transform infrared spectroscopy absorption studies showed that the secondary structure was changed according to the interaction of HSA and CAR. The binding reaction of CAR with HSA can be concluded that hydrophobic and electrostatic interactions are the main binding forces in the CAR‐HSA system. The results obtained herein will be of biological significance in pharmacology and clinical medicines.  相似文献   
56.
Nitric oxide (NO) is the smallest known gaseous signaling molecule released by mammalian and plant cells. To investigate the pathophysiologic role of exogenous NO gas (gNO) in bacterial and mammalian cell cultures, a validated in vitro delivery method is required. The system should be able to deliver gNO directly to bacterial and/or cell cultures in a continuous, predictable, and reproducible manner over a long period of time (days). To accomplish this, a gas delivery system was designed to provide optimal growth conditions for bacteria and/or mammalian cells. Parameters for cell exposure, such as concentration of gNO, nitrogen dioxide (NO(2)), oxygen (O(2)), temperature, and relative humidity (RH) were continuously monitored and evaluated. Uptake of gNO into various media was monitored by measuring the nitrite concentration using the Griess reagent technique. A selection of standard growth media [saline, tryptic soy broth (TSB), Middlebrook 7H9 (MB 7H9), and Dulbecco's modified Eagle's medium (DMEM)] exposed to various concentrations of gNO revealed a steady and consistent transfer of gNO into the aqueous phase over a 48-h period. Validation of optimal growth conditions within the device, as compared to a conventional incubator, were accomplished by growing and observing viability of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and human fibroblast cultures in the absence of gNO. These results indicate that an optimal growth environment for the above tested cells was accomplished inside the proposed delivery system. Dose-dependent toxicological data revealed a significant bacteriostatic effect on P. aeruginosa and S. aureus with continuous exposure to 80 ppm gNO. No toxic effects were observed on dermal fibroblast proliferation at concentrations up to 400 ppm gNO for 48 h. In conclusion, the designed gNO exposure system is capable of supporting cellular viability for a representative range of prokaryote and eukaryotic cells. The exposure system is also capable of obtaining toxicological data. Therefore, the proposed device can be utilized to continuously expose cells to various levels of gNO for up to 72 h to study the in vitro effects of gNO therapy.  相似文献   
57.
58.
59.
60.
Staphylococcus aureus is responsible for significant and increasing number of hospital-and community-acquired infections worldwide. A pool of pathogenesis factors helps the bacterium to cause the range of mild to severe infections leading the high mortality and morbidity. Staphylococcus aureus and Candida albicans can be co-isolated from all human mucosal sites and are responsible for diverse infections. Vaccine design for related polymicrobial infections should consider the consortia of microorganisms responsible for the disease. In this study we considered biofilm mode of growth and polymicrobial nature of the infections caused by S. aureus. In the first phase of study the prediction of putative antigenic targets of S. aureus and C. albicans was conducted based on data mining and bioinformatic characterization of their proteins. Various properties of proteins were evaluated such as subcellular localization, hydrophilicity, repeat containing modules, beta turns, surface accessibility and number of antigenic determinants. The second phase includes various immunoinformatics analyses on six proteins include ALS, ClfA, FtmB, SdrE, Spa and Bap leading to design a novel sub-unit hexavalent vaccine. Several potential T cell and B-cell epitopes are present in our vaccine. Also the vaccine is expected to strongly induce IFN-gamma production. The amino acid sequence introduced here is expected to enhance cell-mediated and humoral responses against S. aureus biofilm-related infections to clear biofilm communities of S. aureus and intracellular colonies of pathogen as well as planktonic cells and thus reduces colonization and persistence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号