首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   29篇
  2023年   3篇
  2022年   10篇
  2021年   22篇
  2020年   20篇
  2019年   24篇
  2018年   15篇
  2017年   13篇
  2016年   15篇
  2015年   20篇
  2014年   22篇
  2013年   19篇
  2012年   28篇
  2011年   23篇
  2010年   15篇
  2009年   7篇
  2008年   13篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
101.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   
102.
Background

The increasing need for therapeutic monoclonal antibodies (mAbs) entails the development of innovative and improved expression strategies. Chromatin insulators have been utilized for the enhancement of the heterologous proteins in mammalian cells.

Methods and results

In the current study the Ccnb1ip1 gene insulator element was utilized to construct a novel vector system for the expression of an anti-CD52 mAb in Chinese hamster ovary (CHO) cells. The insulator containing (pIns-mAb) and control (pmAb) vectors were generated and stable cell pools were established using these constructs. The expression level in the cells created with pIns-mAb vector was calculated to be 233 ng/mL, and the expression rate in the control vector was 210 ng/mL, which indicated a 10.9% increase in mAb expression in pIns-mAb pool. In addition, analysis of mAb expression in clonal cells established from each pool showed a 10% increase in antibody productivity in the highest mAb producing clone derived from the pIns-mAb pool compared to the clone isolated from pmAb pool.

Conclusions

More studies are needed to fully elucidate the effects of Ccnb1ip1 gene insulator on recombinant therapeutic protein expression in mammalian cells. The combination of this element with other chromatin-modifying elements might improve its augmentation effect which could pave the way for efficient and cost-effective production of therapeutic drugs.

  相似文献   
103.
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.  相似文献   
104.
We engineered and employed a chaperone‐like amyloid‐binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross‐reacted with amyloid beta‐peptide (Aβ42) protofibrils, but not with Aβ40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1‐hIAPP complex cross‐react with Aβ42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation‐specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation‐sensitive and sequence‐independent and can target more than one type of protofibril species.  相似文献   
105.
We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure.  相似文献   
106.
Epigenetic modifications of stem cell genome including DNA methylation and histone modifications are critical for the regulation of stem cell gene expression and maintenance of stem cell pool and their differentiation. Although the importance of epigenetic modifications specifically DNA methylation to adult hematopoietic stem cells (HSC) has been established, the identity of specific modulators and precise mechanism of integration of methylation events remain to be uncovered. In this issue, Shuai and colleagues identify the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT1) as a key regulator of DNA methylation of HSC required for their maintenance and lineage commitment (Liu et al, 2014 ).  相似文献   
107.
The present study was carried out to investigate the antioxidant and neuroprotective effects of Hyptis suaveolens methanol extract (HSME) using various in vitro systems. The total phenol and flavonoids contents of the HSME were quantified by colorimetric methods. The HSME extract exhibited potent antioxidant activity as determined by 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power assays. The neuroprotective activity of HSME was determined on mouse N2A neuroblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, intracellular ROS assays, and upregulation of brain neuronal markers at genetic level. The N2A cells were pretreated with different concentrations (0.5, 1, 1.5, and 2 mg/ml) of the extract and then exposed to H2O2 to induce oxidative stress and neurotoxicity. The survival of the cells treated with different concentrations of HSME and H2O2 increased as compared to cells exposed only to H2O2 (47.3 %) (p < 0.05). The HSME also dose-dependently reduced LDH leakage and intracellular ROS production (p < 0.05). Pretreatment with HSME promotes the upregulation of tyrosine hydroxylase (2.41-fold, p < 0.05), and brain-derived neurotrophic factor genes (2.15-fold, p < 0.05) against H2O2-induced cytotoxicity in N2A cells. Moreover, the HSME showed antioxidant activity and decreased neurotoxicity. These observations suggest that HSME have marked antioxidant and neuroprotective activities.  相似文献   
108.
109.
Assessment of the extent of genetic variability within chickpea is fundamental for chickpea breeding and conservation of genetic resources and is particularly useful as a general guide in the choice of parents for breeding hybrids. To establish genetic diversity among 60 accessions of chickpea comprising landraces, internationally developed improved lines, and cultivars, genetic distances were evaluated using 14 simple sequence repeat markers. These markers showed a high level of polymorphism; a total of 59 different alleles were detected, with a mean of 4.2 alleles per locus. The polymorphic information content (PIC) value ranged from 0.31 to 0.89. All the markers, with the exception of TAA170, TA110, GA34, and Ts35, were considered to be informative (PIC > 0.5), indicating their potential usefulness for cultivar identification. Based on the UNJ clustering method, all accessions were clustered in five groups, which indicated the probable origin and region similarity of Iranian landraces over the other cultivars. It also represents a wide diversity among available germplasm. The result has firmly established that introduction of genetic materials from exotic sources has broadened the genetic base of the national chickpea breeding program. As further implications of the findings, this study can be useful for selective breeding for specific traits and in enhancing the genetic base of breeding programs.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号