首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2271篇
  免费   160篇
  国内免费   5篇
  2023年   15篇
  2022年   38篇
  2021年   78篇
  2020年   37篇
  2019年   53篇
  2018年   62篇
  2017年   58篇
  2016年   60篇
  2015年   120篇
  2014年   117篇
  2013年   138篇
  2012年   184篇
  2011年   182篇
  2010年   96篇
  2009年   76篇
  2008年   102篇
  2007年   85篇
  2006年   80篇
  2005年   74篇
  2004年   64篇
  2003年   69篇
  2002年   63篇
  2001年   42篇
  2000年   42篇
  1999年   36篇
  1998年   19篇
  1997年   23篇
  1996年   18篇
  1995年   17篇
  1994年   12篇
  1993年   14篇
  1992年   37篇
  1991年   23篇
  1990年   15篇
  1989年   21篇
  1988年   24篇
  1987年   36篇
  1986年   25篇
  1985年   14篇
  1984年   22篇
  1983年   26篇
  1982年   10篇
  1981年   15篇
  1980年   10篇
  1979年   15篇
  1978年   9篇
  1976年   7篇
  1973年   8篇
  1972年   12篇
  1970年   5篇
排序方式: 共有2436条查询结果,搜索用时 15 毫秒
991.
The TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence. Internal application of the metabolism-resistant analog of inositol 1,4,5-trisphosphate (IP3) activated an inward cationic current within 1 min, which we recorded using the whole cell patch clamp technique. La3+ or Gd3+ abolished the current, consistent with the known properties of SOCs. Pharmacological (G?6976) or genetic (kinase-defective mutant) inhibition of PKCalpha markedly inhibited IP3-induced activation of the current. Thrombin or thapsigargin also activated La3+-sensitive Ca2+ entry in a PKCalpha-dependent manner. We determined the effects of a specific antibody directed against an extracellular epitope of TRPC1 to address the functional importance of TRPC1. External application of the antibody blocked thrombin- or IP3-induced Ca2+ entry. In addition, we showed that addithrombin or thapsigargin induced phosphorylation of TRPC1 within 1 min. Thrombin failed to induce TRPC1 phosphorylation in the absence of PKCalpha activation. Phosphorylation of TRPC1 and the resulting Ca2+ entry were essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. These results demonstrate that PKCalpha phosphorylation of TRPC1 is an important determinant of Ca2+ entry in human endothelial cells.  相似文献   
992.
993.
994.
995.
Lysophosphatidylcholine (LPC) is an oxidized phospholipid present in micromolar concentrations in blood and inflamed tissues. The effects of LPC on neutrophil functions remain incompletely understood, because conflicting reports exist for its stimulatory and inhibitory roles. We report in this study that LPC inhibits superoxide generation in fMLP- and PMA-stimulated neutrophils without affecting fMLP-induced Ca(2+) mobilization and cell viability. This effect was observed with LPC dissolved in ethanol, but not with LPC stock solutions prepared in water or in BSA-containing aqueous solution with sonication. Under the same experimental conditions, platelet-activating factor primed neutrophils for superoxide generation. The inhibitory effect of LPC was observed within 30 s after its application and was maximal at LPC concentrations between 0.1 and 1 muM. Inhibition of superoxide generation was accompanied by a 2.5-fold increase in the intracellular cAMP concentration. In addition, LPC reduced fMLP-stimulated phosphorylation of ERK and Akt and membrane translocation of p67(phox) and p47(phox). The protein kinase A inhibitors H-89 and adenosine 3'5'-cyclic monophosphorothioate Rp-isomer (Rp-cAMP) partially restored superoxide production in LPC-treated neutrophils, indicating involvement of protein kinase A in LPC-mediated inhibition. Using an ex vivo mouse lung perfusion model that measures lung weight change and capillary filtration coefficient, we found that LPC prevented lung vascular injury mediated by fMLP-activated neutrophils. Taken together, these results suggest that LPC-induced elevation of intracellular cAMP is partially responsible for its inhibition of neutrophil NADPH oxidase activation. A similar mechanism of inhibition may be used for the control of neutrophil-mediated tissue injury.  相似文献   
996.
A new series of functionalized 1,2,4-trioxanes 10-21 have been prepared and assessed for antimalarial activity in mice. Several of these trioxanes show significant activity. Trioxane 16, the most active compound of the series, has shown activity by oral route which is comparable with that of the clinically used drug, beta-arteether.  相似文献   
997.
Sexual reproduction in eukaryotes is accomplished by meiosis, a complex and specialized process of cell division that results in haploid cells (e.g., gametes). The stereotypical reductive division in meiosis is a major evolutionary innovation in eukaryotic cells, and delineating its history is key to understanding the evolution of sex. Meiosis arose early in eukaryotic evolution, but when and how meiosis arose and whether all eukaryotes have meiosis remain open questions. The known phylogenetic distribution of meiosis comprises plants, animals, fungi, and numerous protists. Diplomonads including Giardia intestinalis (syn. G. lamblia) are not known to have a sexual cycle; these protists may be an early-diverging lineage and could represent a premeiotic stage in eukaryotic evolution. We surveyed the ongoing G. intestinalis genome project data and have identified, verified, and analyzed a core set of putative meiotic genes-including five meiosis-specific genes-that are widely present among sexual eukaryotes. The presence of these genes indicates that: (1) Giardia is capable of meiosis and, thus, sexual reproduction, (2) the evolution of meiosis occurred early in eukaryotic evolution, and (3) the conserved meiotic machinery comprises a large set of genes that encode a variety of component proteins, including those involved in meiotic recombination.  相似文献   
998.
Several studies have shown that nitric oxide (NO) inhibits Na+ transport in renal and alveolar monolayers. However, the mechanisms by which NO alters epithelial Na+ channel (ENaC) activity is unclear. Therefore, we examined the effect of applying the NO donor drug L-propanamine 3,2-hydroxy-2-nitroso-1-propylhidrazino (PAPA-NONOate) to cultured renal epithelial cells. A6 and M1 cells were maintained on permeable supports in medium containing 1.5 µM dexamethasone and 10% bovine serum. After 1.5 µM PAPA-NONOate was applied, amiloride-sensitive short-circuit current measurements decreased 29% in A6 cells and 44% in M1 cells. This differed significantly from the 3% and 19% decreases in A6 and M1 cells, respectively, treated with control donor compound (P < 0.0005). Subsequent application of PAPA-NONOate to amiloride-treated control (no NONOate) A6 and M1 cells did not further decrease transepithelial current. In single-channel patch-clamp studies, NONOate significantly decreased ENaC open probability (Po) from 0.186 ± 0.043 to 0.045 ± 0.009 (n = 7; P < 0.05) without changing the unitary current. We also showed that aldosterone significantly decreased NO production in primary cultures of alveolar type II (ATII) epithelial cells. Because inducible nitric oxide synthase (iNOS) coimmunoprecipitated with the serum- and glucocorticoid-inducible kinase (SGK1) and both proteins colocalized in the cytoplasm (as shown in our studies in mouse ATII cells), SGK1 may also be important in regulating NO production in the alveolar epithelium. Our study also identified iNOS as a novel SGK1 phosphorylated protein (at S733 and S903 residues in miNOS) suggesting that one way in which SGK1 could increase Na+ transport is by altering iNOS production of NO. aldosterone; epithelial sodium channel; serum- and glycocorticoid-inducible kinase  相似文献   
999.
This study analyzed the role of day length in regulation of seasonal body fattening and testicular growth in a latitudinal Palaearctic-Indian migrant, the redheaded bunting (Emberiza bruniceps). When exposed to increasing photoperiods (hours of light: hours of darkness; 11.5L:12.5D, 12L:12D, 12.5L:11.5D, 13L:11D, 14L:10D, and 18L:6D) for 9-12 weeks, buntings responded in a photoperiod-dependent manner and underwent growth and regression cycle under photoperiods of > or =12 hr per day. Also, the response to a long photoperiod of birds that were held under natural photoperiods at 27 degrees N for 2 years was similar to those who arrived the same year from their breeding grounds ( approximately 40 degrees N), suggesting that the experience of higher amplitude day-night (light-dark, LD) cycles during migratory and breeding seasons were not critical for the subsequent response (initiation-termination-reinitiation) cycle. Another experiment examined entrainment of the circadian photoperiodic rhythm in buntings by subjecting them to T=24+/-2 hr LD-cycles with 8 hr photophase and to T=22 and 24 hr with 11 hr photophase. The results showed a reduction in critical day length under T=22 hr LD-cycle. In the last experiment, we constructed an action spectrum for photoperiodic induction by exposing birds for 4.5 weeks to 13L:11D of white (control), blue (450 nm), or red (640 nm) light at irradiances ranging from 0.028 to 1.4 W m(-2). The threshold light irradiance for photoinduction was about 10-fold higher for blue light, than for red and white lights. These results conclude that the daily light of the environment regulates the endogenous program that times seasonal responses in body fattening and testicular cycles of the redheaded bunting.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号