首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   170篇
  1913篇
  2023年   8篇
  2022年   18篇
  2021年   36篇
  2020年   18篇
  2019年   29篇
  2018年   49篇
  2017年   38篇
  2016年   75篇
  2015年   77篇
  2014年   87篇
  2013年   93篇
  2012年   128篇
  2011年   111篇
  2010年   63篇
  2009年   95篇
  2008年   111篇
  2007年   88篇
  2006年   66篇
  2005年   64篇
  2004年   84篇
  2003年   71篇
  2002年   66篇
  2001年   53篇
  2000年   48篇
  1999年   46篇
  1998年   20篇
  1997年   29篇
  1996年   20篇
  1995年   13篇
  1994年   16篇
  1993年   12篇
  1992年   28篇
  1991年   22篇
  1990年   17篇
  1989年   22篇
  1988年   16篇
  1987年   7篇
  1986年   11篇
  1984年   17篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
排序方式: 共有1913条查询结果,搜索用时 15 毫秒
71.
Hyperoxia is one of the major contributors to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants. Emerging evidence suggests that the arrested lung development of BPD is associated with pulmonary endothelial cell death and vascular dysfunction resulting from hyperoxia-induced lung injury. A better understanding of the mechanism of hyperoxia-induced endothelial cell death will provide critical information for the pathogenesis and therapeutic development of BPD. Epidermal growth factor-like domain 7 (EGFL7) is a protein secreted from endothelial cells. It plays an important role in vascular tubulogenesis. In the present study, we found that Egfl7 gene expression was significantly decreased in the neonatal rat lungs after hyperoxic exposure. The Egfl7 expression was returned to near normal level 2 wk after discounting oxygen exposure during recovery period. In cultured human endothelial cells, hyperoxia also significantly reduced Egfl7 expression. These observations suggest that diminished levels of Egfl7 expression might be associated with hyperoxia-induced endothelial cell death and lung injury. When we overexpressed human Egfl7 (hEgfl7) in EA.hy926 human endothelial cell line, we found that hEgfl7 overexpression could partially block cytochrome c release from mitochondria and decrease caspase-3 activation. Further Western blotting analyses showed that hEgfl7 overexpression could reduce expression of a proapoptotic protein, Bax, and increase expression of an antiapoptotic protein, Bcl-xL. Theses findings indicate that hEGFL7 may protect endothelial cell from hyperoxia-induced apoptosis by inhibition of mitochondria-dependent apoptosis pathway.  相似文献   
72.
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.Programmed cell death (PCD)1 is a fundamental event for the development of multicellular organisms and the homeostasis of their tissues. It is an evolutionarily conserved mechanism present in organisms ranging from yeast to mammals (13).In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-1/caspase-9 complex known as apoptosome. This apoptosome subsequently activates caspases-3 and -7 (4, 5). In other organisms, such as Caenorhabditis elegans or Drosophila melanogaster, however, Cc is not essential for the assembly and activation of the apoptosome (6) despite the presence of proteins homologous to Apaf-1—cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-related killer (Dark) in D. melanogaster—which have been found to be essential for caspase cascade activation. Furthermore, other organisms such as Arabidopsis thaliana lack Apaf-1 (7). In fact, only highly distant caspase homologues (metacaspases) (8, 9), serine proteases (saspases) (10), phytaspases (11) and VEIDases (1214) with caspase-like activity have been detected in plants; however, their targets remain veiled and whether they are activated by Cc remains unclear.Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset of PCD is an evolutionarily conserved event found in organisms ranging from yeast (15) and plants (16) to flies (17), and mammals (18). However, understanding of the roles of this phenomenon in different species can be said to be uneven at best. In fact, the release of Cc from mitochondria has thus far been considered a random event in all organisms, save mammals. Thus, the participation of Cc in the onset and progression of PCD needs to be further elucidated.Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD remain(s) controversial. Recently, new putative functions of Cc, going beyond the already-established apoptosome assembly process, have been proposed in the nucleus (19, 20) and the endoplasmic reticulum (2123). Neither these newly proposed functions nor other arising functions, such as oxidative stress (24), are as yet fully understood. This current state of affairs demands deeper exploration of the additional roles played by Cc in nonmammalian species.In this study, putative novel Cc-partners involved in plant PCD were identified. For this identification, a proteomic approach was employed based on affinity chromatography and using Cc as bait. The Cc-interacting proteins were identified using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). These Cc-partners were then further confirmed in vivo through bimolecular fluorescence complementation (BiFC) in A. thaliana protoplasts and human HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).These results indicate that Cc is able to interact with targets in the plant cell cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc release is an evolutionarily well-conserved event, and allow us to propose Cc as a signaling messenger, which somehow controls different essential events during PCD.  相似文献   
73.
Speciation may be influenced by geographic variation in animal signals, particularly when those signals are important in reproductive decisions. Here, we describe patterns of geographic variation in the song of rufous‐naped wrens Campylorhynchus rufinucha. This species complex is a morphologically variable taxon confined to tropical dry forest areas from Mexico to northwestern Costa Rica. Morphological and genetic analyses suggest that there are at least three partially isolated groups within the complex, including a secondary‐contact zone in coastal western Chiapas between the subspecies C. r. humilus and C. r. nigricaudatus. Based on recordings throughout their geographic range, we investigate the effects of historical isolation on song structure and analyze whether genetic differences or climatic conditions explain observed patterns of variation. Our findings, based on a culturally‐transmitted and sexually‐selected trait, support the hypothesis that three evolutionary units exist within this taxon. Our results suggest that song differences between genetic groups were influenced by historical isolation. We report a strong relationship between vocal dissimilarity and genetic distance, suggesting that differences in vocal characteristics are probably affected by the same factors that drive genetic divergence. We argue that the evolution of song in this taxon is influenced by vicariant events, followed by accumulation of changes in song structure due to several possible factors: cultural drift in song structure; genetic drift in features related to song production; or natural selection acting on features that influence songs, such as body and beak size.  相似文献   
74.
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky–Pudlak, Chediak–Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18hi2499A, which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18hi2499A the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18hi2499A larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18hi2499A can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.  相似文献   
75.
The lipocalin apolipoprotein D (Apo D) is upregulated in peripheral nerves following injury and in regions of the central nervous system, such as the cerebral cortex, hippocampus, and cerebellum, during aging and progression of certain neurological diseases. In contrast, few studies have examined Apo D expression in the brainstem, a region necessary for survival and generally less prone to age-related degeneration. We measured Apo D expression in whole human brainstem lysates by slot-blot and at higher spatial resolution by quantitative immunohistochemistry in eleven brainstem nuclei (the 4 nuclei of the vestibular nuclear complex, inferior olive, hypoglossal nucleus, oculomotor nucleus, facial motor nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and Roller`s nucleus). In contrast to cortex, hippocampus, and cerebellum, apolipoprotein D was highly expressed in brainstem tissue from subjects (N = 26, 32−96 years of age) with no history of neurological disease, and expression showed little variation with age. Expression was significantly stronger in somatomotor nuclei (hypoglossal, oculomotor, facial) than visceromotor or sensory nuclei. Both neurons and glia expressed Apo D, particularly neurons with larger somata and glia in the periphery of these brainstem centers. Immunostaining was strongest in the neuronal perinuclear region and absent in the nucleus. We propose that strong brainstem expression of Apo D throughout adult life contributes to resistance against neurodegenerative disease and age-related degeneration, possibly by preventing oxidative stress and ensuing lipid peroxidation.  相似文献   
76.
The genomic diversity of a collection of 103 indigenous rhizobia isolates from Lupinus mariae-josephae (Lmj), a recently described Lupinus species endemic to alkaline-limed soils from a restricted habitat in Eastern Spain, was investigated by molecular methods. Isolates were obtained from soils of four geographic locations in the Valencia province that harbored the known Lmj plant populations. Using an M13 RAPD fingerprinting technique, 19 distinct RAPD profiles were identified. Phylogenetic analysis based on 16S rDNA and the housekeeping genes glnII, recA and atpD showed a high diversity of native Bradyrhizobium strains that were able to establish symbiosis with Lmj. All the strains grouped in a clade unrelated to strains of the B. canariense and B. japonicum lineages that establish symbioses with lupines in acid soils of the Mediterranean area. The phylogenetic tree based on concatenated glnII, recA and atpD gene sequences grouped the Lmj isolates in six different operational taxonomic units (OTUs) at the 93% similarity level. These OTUs were not associated to any specific geographical location, and their observed divergence predicted the existence of different Bradyrhizobium genomic species. In contrast, phylogenetic analysis of symbiotic genes based on nodC and nodA gene sequences, defined only two distinct clusters among the Lmj strains. These two Lmj nod gene types were largely distinct from nod genes of bradyrhizobia nodulating other Old World lupine species. The singularity and large diversity of these strains in such a small geographical area makes this an attractive system for studying the evolution and adaptation of the rhizobial symbiont to the plant host.  相似文献   
77.
Adenylyl and guanylyl cyclases synthesize second messenger molecules by intramolecular esterification of purine nucleotides, i.e., cAMP from ATP and cGMP from GTP, respectively. Despite their sequence homology, both families of mammalian cyclases show remarkably different regulatory patterns. In an attempt to define the functional domains in adenylyl cyclase responsible for their isotypic-common activation by Galphas or forskolin, dimeric chimeras were constructed from soluble guanylyl cyclase alpha1 subunit and the C-terminal halves of adenylyl cyclases type I, II, or V. The cyclase-hybrid generated cAMP and was inhibited by P-site ligands. The data establish structural equivalence and the ability of functional complement at the catalytic sites in both cyclases. Detailed enzymatic characterization of the chimeric cyclase revealed a crucial role of the N-terminal adenylyl cyclase half for stimulatory actions, and a major importance of the C-terminal part for nucleotide specificity.  相似文献   
78.
79.
Studies were performed to define tissue culture techniques and culture conditions for morphogenesis, callus culture and plantlet culture of sweet orange (Citrus sinensis (L.) Osb.), citron (C. medica L.) and lime (C. aurantifolia) (Christm. Swing). The optimal concentrations of NAA to induce root formation on stem segments were 10 mg l-1 for sweet orange and lime, and 3 mg l-1 for citron. The optimal BA concentration for shoot and bud proliferation was 3 mg l-1 for sweet orange and citron, and 1 mg l-1 for lime. Callus initiation was accomplished in a culture medium containing 10 mg l-1 NAA and 0.25 mg l-1 BA. Callus was maintained by periodical subculture into the same medium supplemented with 10% (v:v) organge juice. In vitro plantlets of the three species were obtained by rooting of shoots developed from bud cultures, and of citron and lime by development of shoots from root cultures. The plants were successfully established on soil.  相似文献   
80.
We examined the effects of diet composition and fasting on lipolysis of freshly isolated adipocytes from gilthead seabream (Sparus aurata). We also analyzed the effects of insulin, glucagon, and growth hormone (GH) in adipocytes isolated from fish fed with different diets. Basal lipolysis, measured as glycerol release, increased proportionally with cell concentration and time of incubation, which validates the suitability of these cell preparations for the study of hormonal regulation of this metabolic process. Gilthead seabream were fed two different diets, FM (100% of fish meal) and PP (100% of plant protein supplied by plant sources) for 6 wk. After this period, each diet group was divided into two groups: fed and fasted (for 11 days). Lipolysis was significantly higher in adipocytes from PP-fed fish than in adipocytes from FM-fed fish. Fasting provoked a significant increase in the lipolytic rate, about threefold in isolated adipocytes regardless of nutritional history. Hormone effects were similar in the different groups: glucagon increased the lipolytic rate, whereas insulin had almost no effect. GH was clearly lipolytic, although the relative increase in glycerol over control was lower in isolated adipocytes from fasted fish compared with fed fish. Together, we demonstrate for the first time that lipolysis, measured in isolated seabream adipocytes, is affected by the nutritional state of the fish. Furthermore, our data suggest that glucagon and especially GH play a major role in the control of adipocyte lipolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号