首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   15篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   16篇
  2012年   18篇
  2011年   16篇
  2010年   8篇
  2009年   17篇
  2008年   13篇
  2007年   21篇
  2006年   13篇
  2005年   14篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  1999年   7篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   11篇
  1988年   8篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   5篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1965年   1篇
  1931年   1篇
排序方式: 共有296条查询结果,搜索用时 46 毫秒
41.
The production of N-acylethanolamine (NAE) is enhanced during inflammation. NAE is synthesized from phosphatidylethanolamine with N-acylphosphatidylethanolamine (NAPE) as a precursor. The amount of NAPE at the site of inflammation exceeds that of NAE. This evokes the possibility that NAPE possesses a biological function, as does NAE. We here examined if N-palmitoylphosphatidylethanolamine (NPPE), a precursor of N-palmitoylethanolamine, modulates the state of inflammation. We found that the level of the phagocytosis of latex beads, Staphylococcus aureus, Escherichia coli, or apoptotic cells by mouse peritoneal macrophages or J774A.1 macrophages was reduced in the presence of liposomes containing NPPE, while that of dextran remained unaffected. This action of NPPE seemed to be due to the inhibition of the activation of Rac1 and Cdc42 in macrophages. These results suggested that NAPE is bioactive lipid acting toward the termination of inflammation.  相似文献   
42.
43.
Tazarotene-induced protein 3 (TIG3) and HRAS-like suppressor family 2 (HRASLS2) exhibit tumor-suppressing activities and belong to the lecithin retinol acyltransferase (LRAT) protein family. Since Ca2+-independent N-acyltransferase and H-rev107 (another tumor suppressor), both of which are members of the LRAT family, have been recently reported to possess catalytic activities related to phospholipid metabolism, we examined possible enzyme activities of human TIG3 and HRASLS2 together with human H-rev107. The purified recombinant proteins of TIG3, HRASLS2, and H-rev107 functioned as phospholipase (PL) A1/2 in a Ca2+-independent manner with maximal activities of 0.53, 0.67, and 2.57 μmol/min/mg of protein, respectively. The proteins were active with various phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs), and for most of substrates the PLA1 activity was much higher than the PLA2 activity. In addition, HRASLS2 catalyzed N-acylation of PE to form N-acyl-PE and O-acylation of lyso PC to form PC. TIG3 and H-rev107 catalyzed the N-acylation and O-acylation at relatively low rates. Moreover, these three proteins showed different expression profiles in human tissues. These results suggest that the tumor suppressors TIG3, HRASLS2 and H-rev107 are involved in the phospholipid metabolism with different physiological roles.  相似文献   
44.
The formation of N-acylphosphatidylethanolamine by N-acylation of phosphatidylethanolamine (PE) is the initial step in the biosynthetic pathway of bioactive N-acylethanolamines, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. We recently cloned a rat enzyme capable of catalyzing this reaction, and referred to the enzyme as Ca2+-independent N-acyltransferase (iNAT). Here we report cDNA cloning and characterization of human and mouse iNATs. We cloned iNAT-homologous cDNAs from human and mouse testes, and overexpressed them in COS-7 cells. The purified recombinant proteins abstracted an acyl group from both sn-1 and sn-2 positions of phosphatidylcholine, and catalyzed N-acylation of PE as well as phospholipase A1/A2-like hydrolysis. The iNAT activity was mainly detected in soluble rather than particulate fractions, and was only slightly increased by Ca2+. These results demonstrated that the human and mouse homologues function as iNAT. As for the organ distribution of iNAT, human testis and pancreas and mouse testis exhibited by far the highest expression level, suggesting its physiological importance in the specific organs. Moreover, mutagenesis studies showed crucial roles of His-154 and Cys-241 of rat iNAT in the catalysis and a possible role of the N-terminal domain in membrane association or protein–protein interaction.  相似文献   
45.
The antioxidant behavior of a series of new synthesized substituted thiazolyl‐thiazolidine‐2,4‐dione compounds (TZDs) was examined using chemiluminescence and electron paramagnetic resonance spin trapping techniques. 5,5‐Dimethyl‐1‐pyrroline‐N‐oxide (DMPO) was used as the spin trap. The reactivity of TZDs with superoxide anion radical (O) and hydroxyl radical (HO?) was evaluated using potassium superoxide/18‐crown‐6 ether dissolved in dimethylsulfoxide, and the Fenton‐like reaction (Fe2+ + H2O2), respectively. The results showed that TZDs efficiently inhibited light emission from the O generating system at a concentration of 0.05–1 mmol L?1 (5–94% reductions were found at 1 mmol L?1 concentration). The TZD compounds showed inhibition of HO?‐dependent DMPO–OH spin adduct formation from DMPO (the amplitude decrease ranged from 8 to 82% at 1 mmol L?1 concentration). The findings showed that examined TZDs had effective activities as radical scavengers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
46.
The scavenging effects of eighteen thiazolyl thiazolidine‐2,4‐dione compounds (TTCs) on superoxide radical , hydroxyl radical HO?, and 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical were evaluated by the chemiluminescence technique, electron spin resonance spectrometry (ESR) and visible spectrophotometry, respectively. The examined compounds were shown to have 27–59% scavenging ability, 19–69% HO? scavenging activity and 2–32% DPPH? scavenging ability. This property of the tested compound seems to be important in the prevention of various diseases of free radicals etiology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
47.
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) are widely expressed in the mammalian CNS, though their functional significance remains unclear. The corresponding null-knockout mutations are lethal. Here, we developed novel mutant mice in which the gene encoding the beta subunit of PDGFR (PDGFR-beta) was genetically deleted in CNS neurons to elucidate the role of PDGFR-beta, particularly in the post-natal stage. Our mutant mice reached adulthood without apparent anatomical defects. In the mutant brain, immunohistochemical analyses showed that PDGFR-beta detected in neurons and in the cells in the subventricular zone of the lateral ventricle in wild-type mice was depleted, but PDGFR-beta detected in blood vessels remained unaffected. The cerebral damage after cryogenic injury was severely exacerbated in the mutants compared with controls. Furthermore, TdT-mediated dUTP-biotin nick end labeling (TUNEL)-positive neuronal cell death and lesion formation in the cerebral hemisphere were extensively exacerbated in our mutant mice after direct injection of NMDA without altered NMDA receptor expression. Our results clearly demonstrate that PDGFR-beta expressed in neurons protects them from cryogenic injury and NMDA-induced excitotoxicity.  相似文献   
48.
DNA polymerases catalyze the incorporation of deoxynucleoside triphosphates into a growing DNA chain using a pair of Mg(2+) ions, coordinated at the active site by two invariant aspartates, whose removal by mutation typically reduces the polymerase activity to barely detectable levels. Using two stopped-flow fluorescence assays that we developed previously, we have investigated the role of the carboxylate ligands, Asp(705) and Asp(882), of DNA polymerase I (Klenow fragment) in the early prechemistry steps that prepare the active site for catalysis. We find that neither carboxylate is required for an early conformational transition, reported by a 2-aminopurine probe, that takes place in the open ternary complex after binding of the complementary dNTP. However, the subsequent fingers-closing step requires Asp(882); this step converts the open ternary complex into the closed conformation, creating the active-site geometry required for catalysis. Crystal structures indicate that the Asp(882) position changes very little during fingers-closing; this side chain may therefore serve as an anchor point to receive the dNTP-associated metal ion as the nucleotide is delivered into the active site. The Asp(705) carboxylate is not required until after the fingers-closing step, and we suggest that its role is to facilitate the entry of the second Mg(2+) into the active site. The two early prechemistry steps that we have studied take place normally at very low Mg(2+) concentrations, although higher concentrations are needed for covalent nucleotide addition, consistent with the second metal ion entering the ternary complex after fingers-closing.  相似文献   
49.
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.  相似文献   
50.
This work investigates the preparation and in vitro efficiency of chitosan gene transfection systems. Chitosan was used to prepare nanoparticles with a size range of 40-200 nm as determined using photon correlation spectroscopy (PCS) and 40-80 nm as determined using transmission electron microscopy (TEM). The ability of particles to complex DNA was investigated using gel retardation. Plasmid DNA pGL3-Control encoding firefly luciferase and pCH110 encoding beta-galactosidase were used as reporter genes. For transfection 293 human embryonal kidney cells and Chinese hamster ovary (CHO-K1) cells were used. The expression of luciferase was assayed and expressed as relative light units per milligram of protein (RLU/mg protein). Results showed that these chitosan particles have potential as vectors for the transfer of DNA into mammalian cells. Cellular transfection by the chitosan-pGL3-Control particles showed a sustained expression of the luciferase gene for about 10 days. Commercial transfection reagents, SuperFect and Lipofectin were also used. In contrast to chitosan particles, the duration of expression for both SuperFect and Lipofectin was only about 2 days. Agarose gel electrophoresis and displacement experiments using polyaspartic acid indicated a probable multiple interaction between DNA and chitosan whilst the interaction between DNA and the polyamidoamine dendrimer appears to be only ionic interaction. No toxic effect on the mammalian cells was seen with chitosan. SuperFect and Lipofectin however, were observed to engender marked cytotoxicity. Poly-D,L-lactide (PLA) nanoparticles (40-80 nm) and poly-L-lactide (PLLA) lamellae (2-6 microm) were also used to load DNA by an adsorption procedure, but these failed to give good expression data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号