首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9881篇
  免费   681篇
  10562篇
  2022年   44篇
  2021年   101篇
  2020年   55篇
  2019年   73篇
  2018年   134篇
  2017年   101篇
  2016年   158篇
  2015年   218篇
  2014年   298篇
  2013年   521篇
  2012年   465篇
  2011年   518篇
  2010年   273篇
  2009年   283篇
  2008年   493篇
  2007年   452篇
  2006年   446篇
  2005年   439篇
  2004年   443篇
  2003年   410篇
  2002年   424篇
  2001年   365篇
  2000年   371篇
  1999年   299篇
  1998年   139篇
  1997年   103篇
  1996年   103篇
  1995年   110篇
  1994年   84篇
  1993年   69篇
  1992年   227篇
  1991年   237篇
  1990年   201篇
  1989年   206篇
  1988年   159篇
  1987年   141篇
  1986年   122篇
  1985年   132篇
  1984年   112篇
  1983年   111篇
  1982年   94篇
  1981年   71篇
  1980年   51篇
  1979年   77篇
  1978年   81篇
  1977年   59篇
  1976年   72篇
  1975年   55篇
  1973年   59篇
  1971年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   
962.
Specific inhibition of hepatitis C virus replication by cyclosporin A   总被引:13,自引:0,他引:13  
The difficulty in eradicating hepatitis C virus (HCV) infection is attributable to the limited treatment options against the virus. Recently, cyclosporin A (CsA), a widely used immunosuppressive drug, has been reported to be effective against HCV infection [J. Gastroenterol. 38 (2003) 567], although little is understood about the mechanism of its action against HCV. In this study, we investigated the anti-viral effects of CsA using an HCV replicon system. Human hepatoma Huh7 cells were transfected with an HCV replicon expressing a chimeric gene encoding a luciferase reporter and neomycin phosphotransferase (Huh7/Rep-Feo). Treatment of the Huh7/Rep-Feo cells with CsA resulted in suppression of the replication of the HCV replicon in a dose-dependent manner, with an IC50 of approximately 0.5 microg/ml. There were no changes in the rate of cell growth or viability, suggesting that the effect of CsA against HCV is specific and not due to cytotoxicity. In contrast, FK506, another immunosuppressive drug, did not suppress HCV replication. CsA did not activate interferon-stimulated gene responses, suggesting that its action is independent of that of interferon. In conclusion, CsA inhibits HCV replication in vitro specifically at clinical concentrations. Further defining its mode of action against HCV replication potentially may be important for identifying novel molecular targets to treat HCV infection.  相似文献   
963.
Green tea is a rich source of polyphenols, and (-)-epigallocatechin-3-gallate (EGCG) is a major constituent of green tea polyphenols. In the present study, we investigated the effect of EGCG on apoptosis induced by irradiation in the human keratinocytic cell line HaCaT. Irradiation by gamma-ray induced apoptosis with concomitant cleavage of caspase-3 and its in vivo substrate poly(ADP-ribose) polymerase. Treatment of cells with EGCG inhibited irradiation-induced apoptosis as detected by Hoechst staining and internucleosomal cleavage of DNA, and prevented the cleavage of these proteins by irradiation. We also found that the treatment of cells with EGCG alone suppressed cell growth and induced apoptosis in these cells. Our results suggest that EGCG inhibits irradiation-induced apoptosis by inactivating the caspase pathway in HaCaT cells. Our study also indicates that EGCG has a dual effect on the survival of these keratinocytes.  相似文献   
964.
1-Aminocyclopropane-l-carboxylate deaminase (ACCD) is a pyridoxal 5/-phosphate dependent enzyme that shows deaminase activity toward ACC, a precursor of plant hormone ethylene. ACCD from some soil bacteria has been reported to be able to break the cyclopropane ring of ACC to yield a-ketobutyrate and ammonia. We reported the crystal structure of ACCD from the yeast Hansenula saturnus in the absence/presence of substrate ACC, and proposed its ingenious reaction mechanisms. In order to study the enzyme further, we overexpressed the ACCD homologue protein (phAHP) from the fully decoded hyperthermophilic archearon, Pyrococcus horikoshii OT3. However, phAHP does not show ACCD activity at high temperature as well as at room temperature, though it has significant sequence similarity. Instead of ACCD activity, the GC-MS analysis and enzymatic method show that phAHP has deaminase activity toward L and D-serine. Here, we present the crystal structures of the native and ACC-complexed phAHP. The overall topology of the phAHP structure is very similar to that of ACCD; however, critical differences were observed around the active site. Here, the differences of enzymatic activity between phAHP and ACCD are discussed based on the structural differences of these two proteins. We suggest that the catalytic disagreement between these two enzymes comes from the difference of the residues near the pyridine ring of pyridoxal 5'-phosphate (PLP), not the difference of the catalytic residues themselves. We also propose a condition necessary in the primary sequence to have ACCD activity.  相似文献   
965.
The procerebrum (PC) of the terrestrial mollusk Limax is a highly developed second-order olfactory center consisting of two electrophysiologically distinct populations of neurons: nonbursting (NB) and bursting (B). NB neurons are by far the more numerous of the two cell types. They receive direct synaptic inputs from afferent fibers from the tentacle ganglion, the primary olfactory center, and also receive periodic inhibitory postsynaptic potentials (IPSPs) from B neurons. Odor-evoked activity in the NB neurons was examined using perforated patch recordings. Stimulation of the superior tentacle with odorants resulted in inhibitory responses in 45% of NB neurons, while 11% of NB neurons showed an excitatory response. The specific response was reproducible in each neuron to the same odorant, suggesting the possibility that activity of NB neurons may encode odor identity. Analysis of the cycle-averaged membrane potential of NB neurons revealed a correlation between the firing rate and the membrane potential at the plateau phase between IPSPs. Also, the firing rate of NB neurons was affected by the frequency of the IPSPs. These results indicate the existence of two distinct mechanisms for the regulation of NB neuron activity.  相似文献   
966.
967.
968.
PEX1 is a type II AAA-ATPase that is indispensable for biogenesis and maintenance of the peroxisome, an organelle responsible for the primary metabolism of lipids, such as beta-oxidation and lipid biosynthesis. Recently, we demonstrated a striking structural similarity between its N-terminal domain and those of other membrane-related AAA-ATPases, such as valosine-containing protein (p97). The N-terminal domain of valosine-containing protein serves as an interface to its adaptor proteins p47 and Ufd1, whereas the physiologic interaction partner of the N-terminal domain of PEX1 remains unknown. Here we found that N-terminal domains isolated from valosine-containing protein, as well as from PEX1, bind phosphoinositides. The N-terminal domain of PEX1 appears to preferentially bind phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate, whereas the N-terminal domain of valosine-containing protein displays broad and nonspecific lipid binding. Although N-ethylmaleimide-sensitive fusion protein, CDC48 and Ufd1 have structures similar to that of valosine-containing protein, they displayed lipid specificity similar to that of the N-terminal domain of PEX1 in the assays. By mutational analysis, we demonstrate that a conserved arginine surrounded by hydrophobic residues is essential for lipid binding, despite very low sequence similarity between PEX1 and valosine-containing protein.  相似文献   
969.
Infrared (IR) spectra were measured for cellulose Ibeta prepared from the mantle of Halocynthia roretzi over a temperature range of 30-260 degrees C to explore the temperature-dependent changes in hydrogen bonds (H-bonds) in the crystal. Structural changes at the phase transition temperature of 220 degrees C are elucidated at the functional group level by perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy. The PCMW2D correlation spectra show that the intensities of bands arising from O3-H3...O5 and O2-H2...O6 intrachain H-bonds dramatically decrease at 220 degrees C, whereas the intensity changes of bands due to interchain H-bonds are not observed adequately. These results suggest that the phase transition is induced by the dissociation of the O3-H3...O5 and O2-H2...O6 intrachain H-bonds. However, the interchain H-bonds are not so much responsible for the transition directly.  相似文献   
970.
Using a defined substrate DNA with a single psoralen interstrand cross-link (ICL), we studied the molecular mechanism of human ICL repair. In vitro ICL repair by human extracts is dependent on replication and is a largely error-free process. Extracts from a human BRCA2-defective mutant cell line, CAPAN-1, are severely compromised in ICL repair. Specifically, 'unhooked' but not fully repaired products accumulate in the reaction with CAPAN-1, and transient expression of BRCA2 in CAPAN-1 restores repair activity. Together, these results reveal that BRCA2 participates in repair of replication-mediated double-strand breaks generated when replication forks encounter ICLs. We also show that nucleotide excision repair is essential for the removal of the lesion left behind on one strand after unhooking. This study provides new mechanistic insights into the repair of ICLs in human cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号