首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9881篇
  免费   681篇
  10562篇
  2022年   44篇
  2021年   101篇
  2020年   55篇
  2019年   73篇
  2018年   134篇
  2017年   101篇
  2016年   158篇
  2015年   218篇
  2014年   298篇
  2013年   521篇
  2012年   465篇
  2011年   518篇
  2010年   273篇
  2009年   283篇
  2008年   493篇
  2007年   452篇
  2006年   446篇
  2005年   439篇
  2004年   443篇
  2003年   410篇
  2002年   424篇
  2001年   365篇
  2000年   371篇
  1999年   299篇
  1998年   139篇
  1997年   103篇
  1996年   103篇
  1995年   110篇
  1994年   84篇
  1993年   69篇
  1992年   227篇
  1991年   237篇
  1990年   201篇
  1989年   206篇
  1988年   159篇
  1987年   141篇
  1986年   122篇
  1985年   132篇
  1984年   112篇
  1983年   111篇
  1982年   94篇
  1981年   71篇
  1980年   51篇
  1979年   77篇
  1978年   81篇
  1977年   59篇
  1976年   72篇
  1975年   55篇
  1973年   59篇
  1971年   44篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
941.
A simple, convenient and label-free fiber optic detection system based on the characteristic property, 'anomalous reflection (AR)' of gold was developed and preliminary experiments showed that the AR signals were sensitive enough to monitor protein-peptide interactions on solid surfaces.  相似文献   
942.
A collagen-degrading thermophile, Geobacillus collagenovorans MO-1, was found to produce two metallopeptidases that hydrolyze the synthetic substrate 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-PLGPR), containing the collagen-specific sequence -Gly-Pro-X-. The peptidases, named Pz peptidases A and B, were purified to homogeneity and confirmed to hydrolyze collagen-derived oligopeptides but not collagen itself, indicating that Pz peptidases A and B contribute to collagen degradation in collaboration with a collagenolytic protease in G. collagenovorans MO-1. There were many similarities between Pz peptidases A and B in their catalytic properties; however, they had different molecular masses and shared no antigenic groups against the respective antibodies. Their primary structures clarified from the cloned genes showed lower identity (22%). From homology analysis for proteolytic enzymes in the database, the two Pz peptidases belong to the M3B family. In addition, Pz peptidases A and B shared high identities of over 70% with unassigned peptidases and oligopeptidase F-like peptidases of the M3B family, respectively. Those homologue proteins are putative in the genome database but form two distinct segments, including Pz peptidases A and B, in the phylogenic tree. Mammalian thimet oligopeptidases, which were previously thought to participate in collagen degradation and share catalytic identities with Pz peptidases, were found to have lower identities in the overall primary sequence with Pz peptidases A and B but a significant resemblance in the vicinity of the catalytic site.  相似文献   
943.
The breast- and ovarian-specific tumor suppressor BRCA1, when associated with BARD1, is an ubiquitin ligase. We have shown here that this heterodimer ubiquitinates a hyperphosphorylated form of Rpb1, the largest subunit of RNA polymerase II. Two major phosphorylation sites have been identified in the Rpb1 carboxyl terminal domain, serine 2 (Ser-2) or serine 5 (Ser-5) of the YSPTSPS heptapeptide repeat. Only the Ser-5 hyperphosphorylated form is ubiquitinated by BRCA1/BARD1. Overexpression of BRCA1 in cells stimulated the DNA damage-induced ubiquitination of Rpb1. Similar to the in vitro reaction, the stimulation of Rpb1 ubiquitination by BRCA1 in cells occurred only on those molecules hyperphosphorylated on Ser-5 of the heptapeptide repeat. In vitro, the carboxyl terminus of BRCA1 (amino acids 501-1863) was dispensable for the ubiquitination of hyperphosphorylated Rpb1. In cells, however, efficient Rpb1 ubiquitination required the carboxyl terminus of BRCA1, suggesting that interactions mediated by this region were essential in the complex milieu of the nucleus. These results link the BRCA1-dependent ubiquitination of the polymerase with DNA damage.  相似文献   
944.
The molecular chaperone ClpB can rescue the heat-damaged proteins from an aggregated state in cooperation with other chaperones. It has two nucleotide binding domains (NBD1 and NBD2) and forms a hexamer ring in a manner dependent on ATP binding to NBD1. In the crystal structure of ClpB with both NBDs filled by nucleotides, the linker between two NBDs forms an 85-A-long coiled-coil that extends on the outside of the hexamer and leans to NBD1. To probe the possible motion of the coiled-coil, we tested the accessibility of a labeling reagent, fluorescence change of a labeled dye, and cross-linking between the coiled-coil and NBD1 by using the mutants with defective NBD1 or NBD2. The results suggest that the coiled-coil is more or less parallel to the main body of ClpB in the absence of nucleotide and that ATP binding to NBD1 brings it to the leaning position as seen in the crystal structure. This motion results in stabilization of the hexamer form of ClpB and promotion of ATP hydrolysis at NBD2.  相似文献   
945.
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function.  相似文献   
946.
This study examined whether the effects of FK506-binding protein dissociation from sarcoplasmic reticulum (SR) Ca(2+) release channels on excitation-contraction (EC) coupling changed when SR Ca(2+) reuptake and (or) the trans-sarcolemmal Ca(2+) extrusion were altered. The steady-state twitch Ca(2+) transient (CaT), cell shortening, post-rest caffeine-induced CaT, and Ca(2+) sparks were measured in rat ventricular myocytes using laser-scanning confocal microscopy. In the normal condition, 50 micromol FK506/L significantly increased steady-state CaT, cell shortening, and post-rest caffeine-induced CaT. When the cells were solely perfused with thapsigargin, FK506 did not reduce any of the states, but when low [Ca(2+)](0) (0.1 mmol/L) was perfused additionally, FK506 reduced CaT and cell shortening, and accelerated the reduction of post-rest caffeine-induced CaT. FK506 significantly increased Ca(2+) spark frequency in the normal condition, whereas it mainly prolonged duration of individual Ca(2+) sparks under the combination of thapsigargin and low [Ca(2+)](0) perfusion. Modification of SR Ca(2+) release by FK506 impaired EC coupling only when released Ca(2+) could not be taken back into the SR and was readily extruded to the extracellular space. Our findings could partly explain the controversy regarding the contribution of FK506-binding protein dissociation to defective EC coupling.  相似文献   
947.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.  相似文献   
948.
We demonstrate that neuronal nitric-oxide synthase (nNOS) is directly inhibited through the phosphorylation of Thr(1296) in NG108-15 neuronal cells. Treatment of NG108-15 cells expressing nNOS with calyculin A, an inhibitor of protein phosphatase 1 and 2A, revealed a dose-dependent inhibition of nNOS enzyme activity with concomitant phosphorylation of Thr(1296) residue. Cells expressing a phosphorylation-deficient mutant in which Thr(1296) was changed to Ala proved resistant to phosphorylation and suppression of NOS activity. Mimicking phosphorylation mutant of nNOS in which Thr(1296) is changed to Asp showed a significant decrease in nNOS enzyme activity, being competitive with NADPH, relative to the wild-type enzyme. These data suggest that phosphorylation of nNOS at Thr(1296) may involve the attenuation of nitric oxide production in neuronal cells through the decrease of NADPH-binding to the enzyme.  相似文献   
949.
950.
Glycogen debranching enzyme (GDE) degrades glycogen in concert with glycogen phosphorylase. GDE has two distinct active sites for maltooligosaccharide transferase and amylo-1,6-glucosidase activities. Phosphorylase limit dextrin from glycogen is debranched by cooperation of the two activities. Fluorogenic branched dextrins were prepared as substrates of GDE from pyridylaminated maltooctaose (PA-maltooctaose) and maltotetraose, taking advantage of the synthetic action of Klebsiella pneumoniae pullulanase. Their structures were as follows: Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4GlcPA (B3), Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B4), Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5), Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B6), Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B7), and Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B8). These dextrins were incubated with porcine skeletal muscle GDE. No fluorogenic product was found in the digest of B8. The fluorogenic products from B3, B4, and B5 were PA-maltooctaose only. PA-maltooctaose, PA-maltoundecaose, and 6(7)-O-alpha-glucosyl-PA-maltooctaose were from B7. PA-maltooctaose and 6(6)-O-alpha-glucosyl-PA-maltooctaose were from B6. These results indicate that the maltooligosaccharide transferase removed the maltotriosyl residues from the maltotetraosyl branches by hydrolysis or intramolecular transglycosylation to expose 6-O-alpha-glucosyl residues, and then the amylo-1,6-glucosidase hydrolyzed the alpha-1,6-glycosidic linkages of the products rapidly. Probably, 6-O-alpha-glucosyl-PA-maltooctaoses from B7 and B6 were less susceptible to the amylo-1,6-glucosidase than were those from B3, B4, and B5. Taking this into account, B3, B4, and B5 are suitable substrates for GDE assay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号