首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   32篇
  637篇
  2022年   2篇
  2021年   13篇
  2020年   5篇
  2019年   7篇
  2018年   12篇
  2017年   13篇
  2016年   23篇
  2015年   30篇
  2014年   30篇
  2013年   41篇
  2012年   50篇
  2011年   54篇
  2010年   23篇
  2009年   24篇
  2008年   38篇
  2007年   33篇
  2006年   37篇
  2005年   35篇
  2004年   22篇
  2003年   19篇
  2002年   19篇
  2001年   11篇
  2000年   6篇
  1999年   11篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有637条查询结果,搜索用时 15 毫秒
21.
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.  相似文献   
22.
“Nagashima-type” palmoplantar keratosis (NPPK) is an autosomal recessive nonsyndromic diffuse palmoplantar keratosis characterized by well-demarcated diffuse hyperkeratosis with redness, expanding on to the dorsal surfaces of the palms and feet and the Achilles tendon area. Hyperkeratosis in NPPK is mild and nonprogressive, differentiating NPPK clinically from Mal de Meleda. We performed whole-exome and/or Sanger sequencing analyses of 13 unrelated NPPK individuals and identified biallelic putative loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily. We identified a major causative mutation of c.796C>T (p.Arg266) as a founder mutation in Japanese and Chinese populations. SERPINB7 was specifically present in the cytoplasm of the stratum granulosum and the stratum corneum (SC) of the epidermis. All of the identified mutants are predicted to cause premature termination upstream of the reactive site, which inhibits the proteases, suggesting a complete loss of the protease inhibitory activity of SERPINB7 in NPPK skin. On exposure of NPPK lesional skin to water, we observed a whitish spongy change in the SC, suggesting enhanced water permeation into the SC due to overactivation of proteases and a resultant loss of integrity of the SC structure. These findings provide an important framework for developing pathogenesis-based therapies for NPPK.  相似文献   
23.
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms’ tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing’s sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms’ tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.  相似文献   
24.
25.
26.
Mannan-binding protein (MBP) is a C-type serum lectin that is an important constituent of the innate immune defense because it activates the complement system via the lectin pathway. While the pig has been proposed to be an attractive source of xenotransplantable tissues and organs, little is known about porcine MBP. In our previous studies, phosphomannan, but not mannan, was found to be an effective inhibitor of the C1q-independent bactericidal activity of newborn piglet serum against some rough strains of Gram-negative bacteria. In contrast, the inhibitory activities of phosphomannan and mannan were very similar in the case of MBP-dependent bactericidal activity against rough strains of Escherichia coli K-12 and S-16. Based on these findings, we inferred that an MBP-like lectin with slightly or completely different carbohydrate binding specificity might exist in newborn piglet serum and be responsible for the C1q-independent bactericidal activity. Herein we report that a novel phosphomannan-binding lectin (PMBL) of 33 kDa under reducing conditions was isolated from both newborn and adult porcine serum and characterized. Porcine PMBL functionally activated the complement system via the lectin pathway triggered by binding with both phosphomannan (P-mannan) and mannan, which, unlike MBP, was effectively inhibited by mannose 6-phosphate- or galatose-containing oligosaccharides. Our observations suggest that porcine PMBL plays a critical role in the innate immune defense from the newborn stage to adult-hood, and the establishment of a newborn piglet experimental model for the innate immune system studies is a valuable step toward elucidation of the physiological function and molecular mechanism of lectin pathway.  相似文献   
27.
We recently reported the disruption of the inner mitochondrial membrane peptidase 2-like (IMMP2L) gene by a chromosomal breakpoint in a patient with Gilles de la Tourette syndrome (GTS). In the present study we sought to identify genetic variation in IMMP2L, which, through alteration of protein function or level of expression might contribute to the manifestation of GTS. We screened 39 GTS patients, and, due to the localization of IMMP2L in the critical region for the autistic disorder (AD) locus on chromosome 7q (AUTS1), 95 multiplex AD families; however, no coding mutations were found in either GTS or AD patients. In addition, no parental-specific expression of IMMP2L was detected in somatic cell hybrids containing human chromosome 7 and human cell lines carrying a maternal uniparental disomy for chromosome 7 (mUPD7). Despite the fact that no deleterious mutations in IMMPL2 (other than the inverted duplication identified previously) were identified in either GTS or AD, this gene cannot be excluded as a possible rare cause of either disorder.  相似文献   
28.
Elongation of pollen tubes in pistils after self-pollination of Lilium longiflorum cv. Hinomoto exhibiting strong gametophytic self-incompatibility was promoted by cAMP and also promoted by some metabolic modulators, namely, activators (forskolin and cholera toxin) of adenylate cyclase and inhibitors (3-isobutyl-1-methylxanthine and pertussis) of cyclic nucleotide phosphodiesterase. Moreover, the elongation was promoted by acetylcholine (ACh) and other choline derivatives, such as acetylthiocholine, L-α-phosphatidylcholine and chlorocholinechloride [CCC; (2-chloroethyl) trimethyl ammonium chloride]. A potent inhibitor (neostigmine) of acetylcholinesterase (AChE) as well as acetylcholine also promoted the elongation. cAMP enhanced choline acetyltransferase (ChAT) activity and suppressed AChE activity in the pistils, suggesting that the results are closely correlated with self-incompatibility in L. longiflorum. In short, it came to light that cAMP modulates ChAT (acetylcholine-forming enzyme) and AChE (acetylchoine-decomposing enzyme) activities to enhance the level of ACh in the pistils of L. logiflorum after self-incompatible pollination. These results indicate that the self-incompatibility on self-pollination is caused by low levels of ACh and/or cAMP.Key Words: pollen tubes, self-incompatibility, Lilium longiflorum, cAMP, acetylcholie, AChE, ChATCyclic AMP (cAMP) is an essential signaling molecule in both prokaryotes and eukaryotes.1 The existence of cAMP in higher plants was questioned by some reviewers24 in the mid 1970''s, so that many workers were discouraged from studying roles in plant biology. However, its presence was confirmed by mass spectrometry5 and infrared spectrometry6 in the early 1980''s and increasing evidence712 now suggests that cAMP makes important contributions in plant cells, as in animals.Lily (Lilium longiflorum) exhibits strong gametophytic self-incompatibility.13,14 Thus, elongation of pollen tubes in the pistil after self-incompatible pollination in L. longiflorum cv. Hinomoto stops halfway, in contrast to the case after cross-compatible pollination (cross with cv. Georgia).14 This self-incompatibility appears to be associated with the stress and self-incompatible pollination on stigmas of lilies results in activation and/or induction of enzymes such as NADH- and NADPH-dependent oxidases, xanthine oxidase, superoxide dismutase (SOD), catalase and ascorbate peroxidase in the pistils.15 The activities of NADH- and NADPH-dependent oxidases (O2-forming enzymes), however, are known to be suppressed by cAMP16 and increase in the level of cAMP in guinea pig neutrophils results in their decreased expression.17 The level of O2 reactions with SOD is also decreased by cAMP.18 In the case of the lily, inhibition of NADH- and NADPH-dependent oxidases by cAMP was found to be noncompetitive with NAD(P)H.16 We hypothesized that decrease in active oxygen species such as O2 and suppression of stress enzyme activities in self-pollinated pistils of lily by cAMP might cause elongation of pollen tubes after self-pollination and this proved to be the case. Namely, elongation of pollen tubes after self-incompatible pollination in lily was promoted by exogenous cAMP at a concentration as low as 10 nM, a conceivable physiological level.13 Moreover, similar elongation could be achieved with adenylate cyclase activators [forskolin(FK) and cholera toxin] and cAMP phosphodiesterase inhibitors [3-isobutyl-1-methylxanthine (IBMX) and pertussis toxin].14,19 These phenomena led us to examine the involvement of endogenous cAMP in pistils after self-incompatible or cross-compatible pollination. As expected, the level of endogenous cAMP in pistils after self-pollination was approximately one half of that after cross-pollination. Furthermore, this was associated with a concomitant decrease in adenylate cyclase and increase in cAMP phosphodiesterase.19Many researchers in the field of plant biology have been unsuccessful in attempts to estimate the quantity of cAMP and to detect activities of adenylate cyclase and cAMP phosphodiesterase. On major difficulty is the presence of proteases and we have overcome this problem by using protease inhibitors, such as aprotinin and leupeptin.19In 1947, acetylcholine (ACh) of higher plants was first reported in a nettle (Urtica urens) found in the Himalaya mountain range.20 In 1983, its existence in plants was confirmed by mass spectrometry of preparations from Vigna seedlings.21 In our preliminary studies, CCC (chlorocholinechloride), a plant growth retardant (specifically an anti-gibberellin), enhanced the elongation of the pollen tubes in pistils after self-incompatible pollination in lilies. This led us to investigate whether other choline derivatives cause similar effects and positive findings were obtained with ACh, acetylthiocholine and L-α-phosphatidlylcholine.22 Moreover, the elongation was also promoted by neostigmine, an inhibitor of acetylcholine esterase (AChE) activity. In line with these results, choline acetyltransferase (ChAT) demonstrated low and AChE high activity in pistils after self-incompatible pollination.The positive influence of cAMP14,19 and ACh22 in pistils of L. longiflorum after self-incompatible pollination encouraged us to examine the involvement of these two molecules in regulation of pollen tube elongation of lily after self-incompatible and cross-compatible pollination. As a result, it was revealed that cAMP promotes ChAT and suppresses AChE activity in pistils after both self- and cross-pollination. In other words, the self-incompatibilty in pistils of L. longiflorum appears to be due to levels of ACh and/or cAMP below certain threshold values.Hitherto, these substances have not been recognized to play important roles in the metabolic systems of higher plants. However, given their conservation through evolution, it is natural that such central metabolic substances make essential contributions, regardless of the organism. We have succeeded in establishing physiological functions of cAMP and ACh in pistils of lily14,19,22 and this points to use of plant reproductive organs such as research materials. The exact responsibilities of the two molecules may depend on differences in tissues or organs of plants and further molecular biological studies in this area are clearly warranted. This issue is currently being investigated.  相似文献   
29.
30.
Tanikawa  Natsuko  Nakaji  Tatsuro  Yahara  Hikari  Makita  Naoki 《Plant and Soil》2019,441(1-2):469-483
Plant and Soil - Root morphological response to localised phosphorus (P) application plays a crucial role in P acquisition. However, detailed knowledge of when and where roots respond to P patch...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号