首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2011篇
  免费   123篇
  2021年   24篇
  2020年   18篇
  2019年   18篇
  2018年   25篇
  2017年   31篇
  2016年   41篇
  2015年   58篇
  2014年   73篇
  2013年   111篇
  2012年   118篇
  2011年   124篇
  2010年   82篇
  2009年   79篇
  2008年   103篇
  2007年   107篇
  2006年   99篇
  2005年   121篇
  2004年   86篇
  2003年   91篇
  2002年   90篇
  2001年   69篇
  2000年   57篇
  1999年   56篇
  1998年   14篇
  1997年   15篇
  1996年   14篇
  1995年   15篇
  1994年   14篇
  1993年   15篇
  1992年   33篇
  1991年   23篇
  1990年   31篇
  1989年   30篇
  1988年   27篇
  1987年   21篇
  1986年   37篇
  1985年   26篇
  1984年   26篇
  1983年   18篇
  1982年   10篇
  1981年   4篇
  1980年   4篇
  1979年   9篇
  1978年   6篇
  1976年   4篇
  1975年   13篇
  1974年   5篇
  1972年   8篇
  1971年   7篇
  1970年   5篇
排序方式: 共有2134条查询结果,搜索用时 180 毫秒
71.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
72.
The choice of treatment for primary nephrotic syndrome depends on the pathologic type of the disorder. Renal biopsy is necessary for a definitive diagnosis, but it is burdensome for the patients, and can be avoided if tests could be performed using urine or plasma. In this study, we analyzed 100 urinary proteins, 141 plasma proteins, and 57 urine/plasma ratios in cases of diabetic nephropathy (DN; n = 11), minimal change nephrotic syndrome (MCNS; n = 14), and membranous nephropathy (MN; n = 23). We found that the combination of urinary retinol-binding protein 4 and SH3 domain-binding glutamic acid-rich-like protein 3 could distinguish between MCNS and DN, with an area under the curve (AUC) of 0.9740. On the other hand, a selectivity index (SI) based on serotransferrin and immunoglobulin G, which is often used in clinical practice, distinguished them with an AUC of 0.9091. Similarly, the combination of urinary afamin and complement C3 urine/plasma ratio could distinguish between MN and DN with an AUC of 0.9842, while SI distinguished them with an AUC of 0.8538. Evidently, the candidates identified in this study were superior to the SI method. Thus, the aim was to test these biomarkers for accurate diagnosis and to greatly reduce the burden on patients.  相似文献   
73.
PIWI-interacting RNAs (piRNAs) defend the genome against transposon activity in animal gonads. The Hsp90 chaperone machinery has been implicated in the piRNA pathway, but its exact role remains obscure. Here, we examined the effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an Hsp90-specific inhibitor, on the piRNA pathway. In the silkworm ovary-derived BmN4 cells, 17-AAG treatment reduced the level of piRNAs and PIWI proteins. In vitro, the 5′-nucleotide preference upon precursor piRNA loading was compromised by 17-AAG, whereas 3′-end trimming and 2′-O-methylation were unaffected. Our data highlight a role of Hsp90 in accurate loading of precursor piRNAs into PIWI proteins.  相似文献   
74.
75.
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.  相似文献   
76.

Background

Monocarboxylate transporters (MCTs) transport monocarboxylates such as lactate, pyruvate and ketone bodies. These transporters are very attractive therapeutic targets in cancer. Elucidations of the functions and structures of MCTs is necessary for the development of effective medicine which targeting these proteins. However, in comparison with MCT1, there is little information on location of the function moiety of MCT4 and which constituent amino acids govern the transport function of MCT4. The aim of the present work was to determine the molecular mechanism of L-lactate transport via hMCT4.

Experimental approach

Transport of L-lactate via hMCT4 was determined by using hMCT4 cRNA-injected Xenopus laevis oocytes. hMCT4 mediated L-lactate uptake in oocytes was measured in the absence and presence of chemical modification agents and 4,4′-diisothiocyanostilbene-2,2′-disulphonate (DIDS). In addition, L-lactate uptake was measured by hMCT4 arginine mutants. Immunohistochemistry studies revealed the localization of hMCT4.

Results

In hMCT4-expressing oocytes, treatment with phenylglyoxal (PGO), a compound specific for arginine residues, completely abolished the transport activity of hMCT4, although this abolishment was prevented by the presence of L-lactate. On the other hand, chemical modifications except for PGO treatment had no effect on the transport activity of hMCT4. The transporter has six conserved arginine residues, two in the transmembrane-spanning domains (TMDs) and four in the intracellular loops. In hMCT4-R278 mutants, the uptake of L-lactate is void of any transport activity without the alteration of hMCT4 localization.

Conclusions

Our results suggest that Arg-278 in TMD8 is a critical residue involved in substrate, L-lactate recognition by hMCT4.  相似文献   
77.
Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.  相似文献   
78.
The activation process of secretory or membrane-bound zinc enzymes is thought to be a highly coordinated process involving zinc transport, trafficking, transfer and coordination. We have previously shown that secretory and membrane-bound zinc enzymes are activated in the early secretory pathway (ESP) via zinc-loading by the zinc transporter 5 (ZnT5)-ZnT6 hetero-complex and ZnT7 homo-complex (zinc transport complexes). However, how other proteins conducting zinc metabolism affect the activation of these enzymes remains unknown. Here, we investigated this issue by disruption and re-expression of genes known to be involved in cytoplasmic zinc metabolism, using a zinc enzyme, tissue non-specific alkaline phosphatase (TNAP), as a reporter. We found that TNAP activity was significantly reduced in cells deficient in ZnT1, Metallothionein (MT) and ZnT4 genes (ZnT1 −/− MT −/− ZnT4 −/− cells), in spite of increased cytosolic zinc levels. The reduced TNAP activity in ZnT1 −/− MT −/− ZnT4 −/− cells was not restored when cytosolic zinc levels were normalized to levels comparable with those of wild-type cells, but was reversely restored by extreme zinc supplementation via zinc-loading by the zinc transport complexes. Moreover, the reduced TNAP activity was adequately restored by re-expression of mammalian counterparts of ZnT1, MT and ZnT4, but not by zinc transport-incompetent mutants of ZnT1 and ZnT4. In ZnT1 −/− MT −/− ZnT4 −/− cells, the secretory pathway normally operates. These findings suggest that cooperative zinc handling of ZnT1, MT and ZnT4 in the cytoplasm is required for full activation of TNAP in the ESP, and present clear evidence that the activation process of zinc enzymes is elaborately controlled.  相似文献   
79.
In South America, the order Atheriniformes includes the monophyletic genus Odontesthes with 20 species that inhabit freshwater, estuarine and coastal environments. Pejerrey Odontesthes argentinensis is widely distributed in coastal and estuarine areas of the Atlantic Ocean and is known to foray into estuaries of river systems, particularly in conditions of elevated salinity. However, to our knowledge, a landlocked self-sustaining population has never been recorded. In this study, we examined the pejerrey population of Salada de Pedro Luro Lake (south-east of Buenos Aires Province, Argentina) to clarify its taxonomic identity. An integrative taxonomic analysis based on traditional meristic, landmark-based morphometrics and genetic techniques suggests that the Salada de Pedro Luro pejerrey population represents a novel case of physiological and morphological adaptation of a marine pejerrey species to a landlocked environment and emphasises the environmental plasticity of this group of fishes.  相似文献   
80.
Group A rotavirus (RVA) rarely causes severe complications such as encephalitis/encephalopathy. However, the pathophysiology of this specific complication remains unclear. Next-generation sequence analysis was used to compare the entire genome sequences of RVAs detected in patients with encephalitis/encephalopathy and gastroenteritis. This study enrolled eight patients with RVA encephalitis/encephalopathy and 10 with RVA gastroenteritis who were treated between February 2013 and July 2014. Viral RNAs were extracted from patients' stool, and whole-genome sequencing analysis was carried out to identify the specific gene mutations in RVA obtained from patients with severe neurological complications. Among the eight encephalitis/encephalopathy cases, six strains were DS-1-like G1P[8] and the remaining two were Wa-like G1P[8] (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1). Meanwhile, eight of the 10 viruses detected in rotavirus gastroenteritis patients were DS-1-like G1P[8], and the remaining two were Wa-like G1P[8]. These strains were further characterized by conducting phylogenetic analysis. No specific clustering was demonstrated in RVAs detected from encephalitis/encephalopathy patients. Although the DS-1-like G1P[8] strain was predominant in both groups, no specific molecular characteristics were detected in RVAs from patients with severe central nervous system complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号